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Abstract. We construct a non-linear elliptic partial differential equation for a given
smooth closed spin 4k-manifold (k ≥ 1) and a Hermitian line bundle over the manifold.
The equation is an extended version of an analogue of the Seiberg-Witten equation for
a smooth closed Spinc 4-manifold. We define smooth invariants of the 4k-manifold by
using the moduli space of all solutions of the equation.

1. Introduction

Let X be a smooth oriented closed manifold with a Riemannian metric g. Let E and
F be smooth vector bundles of finite rank over X with Hermitian metrics hE and hF

respectively. We set V = Γ (E) and W = Γ (F ). Let G be a compact Lie group. We
assume that V and W be right G-modules on which G acts orthogonally. We consider a
G-equivariant non-linear elliptic operator of the form,

D + Q : V −−−→ W,

where D is a 1st order linear elliptic operator and Q is a quadratic map, i.e., there exists
a bi-linear map Q̂ : V × V −→ W such that Q(v) = Q̂(v, v) for all v ∈ V . The space S
of all solutions of the equation (D + Q)(v) = 0 for v ∈ V is (D + Q)−1(0). The moduli
space M of S is defined as (D+Q)−1(0)/G. We would like to construct global differential
topological invariants of X by using the data of S and M, which depend only on the
isomorphism classes of E and F , and do not depend on the Riemannian metric g and the
Hermitian metrics hE, hF . Let us consider the case where both S and M are compact.
Then we have the following family of linear elliptic operators parameterized by S,

D =
{

Dv = D + Q̂(v, ·) : V −→ W | v ∈ S
}

.

The index bundle of D is a virtual G-bundle over S, i.e., indexD ∈ KG(S). We set

index D̂ = indexD/G. Then index D̂ is a virtual bundle over M, i.e., index D̂ ∈ K(M).
We expect that the number

qs(X,E, F ) = 〈ch(index D̂), [M]〉
is such an invariant, where ch : K(M) −→ H∗(M;Q) is the Chern character homomor-
phism and the suffix s is an auxiliary global geometrical structure of X, e.g. spin structure,
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which is used in order to construct an elliptic operator D + Q. Furthermore, if the com-
pact Lie group G acts on S freely, then S has a principal G-bundle structure over M.
Then the number

q′′s (X, E, F ) = 〈ch(S), [M]〉
be expected to be such an invariant of X. On the other hand, by using the method of
“finite dimensional approximation of the map D + Q” developed by Furuta [14],[15], we
may construct such an invariant as a stable homotopy class of maps,

φs(X,E, F ) ∈ [S(V ), S(W )]G,

where

φs(X,E, F ) = lim−→
λ

(Dλ + Qλ), [S(V ), S(W )]G = lim−→
λ

[S(Vλ), S(Wλ)]
G

and

Dλ + Qλ : Vλ −−−→ Wλ

is a finite dimensional approximation of (D + Q) : V −→ W and S(Vλ) and S(Wλ) are
spheres in Vλ and Wλ respectively.

Our problem is how to construct an instance of the above model D + Q : V −→ W
such that S and M are compact for a manifold X in some suitable category with an
auxiliary global geometrical structure. We already have an example, the Seiberg-Witten
equation reformulated by Furuta [14]. In Furuta’s theory, X is a closed spin 4-manifold
and V = (Ω1⊗R

√−1R) ⊕ Γ (S+⊗CL) and W = ((Ω0 ⊕ Ω+)⊗R
√−1R) ⊕ Γ (S−⊗CL),

where Ω∗ is the space of differential forms on X and Ω+ is the space of self-dual 2-forms
and S = S+ ⊕ S− is the complex spinor bundle for the spin structure and L is a trivial
Hermitian line bundle over X. The linear elliptic operator D is given by

D =

(
d+ + d∗ 0

0 /∂

)
,

where d+ + d∗ is equivalent to the AHS complex

0 −−−→ Ω0 d−−−→ Ω1 d+−−−→ Ω2
+ −−−→ 0

and /∂ is the half of a twisted Dirac operator. The quadratic map Q is given by

Q

(
a
φ

)
=

(
φ
√−1φ√−1c(a)φ

)
,

where c : Ω∗ −→ C(X) is the quantization isomorphism to the Clifford bundle and c(a)φ
means the Clifford multiplication and φ

√−1φ means the multiplication in the quaternions
H which is considered as the Cliffordian multiplication. In this theory, the auxiliary
geometrical structure s is a spin structure on X and the compact Lie group is Pin(2) =
〈S1, j〉 ⊂ H×. The Seiberg-Witten equation is given by the Pin(2)-equivariant non-linear
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elliptic operator (D + Q) : V −→ W . The moduli space M = (D + Q)−1(0)/S1 is a
smooth oriented closed manifold. The Seiberg-Witten invariant is given by

q′′s (X, L) =

∫

M
c1(S)d,

where d = 1
2
dimM. Let us denote by Spin(X) the space of spin structures on X. The

map

Spin(X,L)
q′′−−−→ Z

s 7−→ q′′s (X,L)

is an invariant of orientation preserving diffeomorphisms of X. The stable homotopy
version of the Seiberg-Witten invariant defined by Furuta is given by

φs(X) = lim−→
λ

[Dλ + Qλ] ∈ lim−→x,y

[
S(Hx+k ⊕ R̃y), S(Hx ⊕ R̃l+y)

]Pin(2)

,

where kE8 ⊕ lH is the intersection form of X and R̃ is the non-trivial real 1-dimensional
Pin(2)-module.

We construct our theory as an analogue of Furuta’s theory. Let X be a connected
closed oriented spin manifold of dimension n = 4k (k ≥ 1) with a Riemannian metric
g. Let L be a Hermitian line bundle over X with a Hermitian metric h and let PL be a
principal U(1) = S1-bundle over X such that PL×U(1)C ∼= L. The real Clifford bundle
C(X) = C+(X)⊕ C−(X) is a Z2-grading (super) vector bundle over X and the complex
spinor bundle S = S+⊕S− for a given spin structure of X is a Z2-grading C(X)-module.
We denote by γ the chirality operator. We set C±(X) = 1±γ

2
C(X). The spaces 1±γ

2
C(X)

are the ±1-eigen spaces of C(X) for the chirality operator γ respectively. We have the
decomposition of C(X):

C(X) = C+
+(X)⊕ C+

−(X)⊕ C−
+(X)⊕ C−

−(X).

We can consider the quarter of a twisted Dirac operator

/∂C : Γ (C−
−(X)⊗RAdPL) −−−→ Γ (C+

+(X)⊗RAdPL),

which is equivalent to the extended AHS-complex

0 −−−→ Ω0 d−−−→ Ω1 d−−−→ · · · d−−−→ Ω2k−1 d+−−−→ Ω2k
+ −−−→ 0,

where Ω2k
+ is the space of self-dual 2k-forms. We construct our equation using the operator

/∂C instead of the operator d∗ + d+ in the Seiberg-Witten equation. We denote by s the
spin structure of X. We define the Cliffordian monopole equation D + Q : V −→ W for
X, L, and s as follows: Let V = Γ (S+⊗CL) ⊕ Γ (C−

−⊗RAdPL) and W = Γ (S−⊗CL) ⊕
Γ (C+

+⊗RAdPL), where PL is the principal U(1)-bundle associated with L. The operator
D : V −→ W in our theory is defined by

D =

(
/∂S 0
0 /∂C

)
,
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where /∂S : Γ (S+⊗CL) −→ Γ (S−⊗CL) is the half of twisted Dirac operator. The quadratic
map Q is defined by

Q

(
φ
ξ

)
=

( −ξφ
(φ⊗ φ∗)0 +

√−1ξ#ξ

)
,

where φ ∈ Γ (S+⊗CL), ξ ∈ Γ (C−
−⊗RAdPL), ξ# ∈ Γ (C−

+⊗RAdPL) and (φ ⊗ φ∗)0 ∈
Γ (C+

+⊗RAdPL) means the purely imaginary part of φ⊗φ∗ ∈ Γ (C+
+⊗RC). The #-operator

is defined in Section 2. Here we call our equation “(D+Q)(φ, ξ) = 0” the Cliffordian mono-
pole equation for the pair (X,L). The operator D + Q is S1-equivariant. The perturbed
Cliffordian monopole equation perturbed by η ∈ Γ (C+

+⊗RAdPL) satisfying /∂Cη = 0 is
defined by {

/∂Sφ = ξφ,

/∂Cξ = −(φ⊗ φ∗)0 −
√−1ξ#ξ + η

(1)

for (φ, ξ) ∈ Γ (S+⊗CL)⊕Γ (C−
−⊗RAdPL). We denote by SMON,η the space of all solutions

of the perturbed Cliffordian monopole equation (1). We assume that Hi
DR(X) = 0 for

odd i and 1+ b2 + · · ·+ b2k−1 + b2k
+ > 1, where bi = dim Hi

DR(X) and b2k
+ = dim H2k

DR,+, the
dimension of the space of self-dual harmonic 2k-forms. Our main result is the following:

Theorem 1.1. For a generic perturbation η 6= 0, the space SMON,η is a smooth oriented
compact manifold of dimension

dimSMON,η = −χ(X) + sign(X)

2
+ 2〈ch(L)Â(X), X〉+ 1,

if SMON,η exists. Furthermore, there is a one to one correspondence between the orienta-
tions of SMON,η and the orientations of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X),

where H2k
DR,+(X) is the space of real harmonic self-dual 2k-forms.

Theorem 1.1 follows from Theorem 3.2 , Corollary 3.2 and Lemma 4.3. Then we can
define the smooth invariants qs(X,L), q′s(X,L), q′′s (X,L) and the stable version invariant
φs(X,L) of the pair (X,L) by using the moduli space MMON,η = SMON,η/S

1 and the
non-linear Dirac operator D + Q.

Theorem 1.2. Our integral invariants q′s(X,L), q′′s (X,L) and rational invariant qs(X,L)
do not depend on the choice of Riemannian metric g on X, the choice of Hermitian metric
h on L and the choice of generic perturbation η.

Theorem 1.2 follows from Theorem 6.1 and Corollary 6.1.
The organization of this paper is the following. In Section 2, we give some preparations

for our theory. We treat Clifford bundles, spinor bundles, Dirac operators, e.t.c.. In
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Section 3, we define a perturbed Cliffordian monopole equation on a closed spin 4k-
manifold. In Section 4, we show that the space S of all solutions of a perturbed Cliffordian
monopole equation has a structure of oriented finite dimensional manifold. In Section 5,
we prove the compactness of S. In Section 6, we define three invariants of X by using
the index bundle of an elliptic family parameterized by the moduli space M = S/G and
the principal G-bundle structure of S over M. In Section 7, we give some results for the
existence problem of solutions of Cliffordian monopole equations.

2. Clifford bundles, Spin structures and Dirac operators

Let (e1, . . . , en) be an orthonormal basis of Rn with respect to the standard met-
ric on Rn. The (real) Clifford algebra C(Rn) of Rn is given by C(Rn) = T (Rn)/I,
where T (Rn) = ⊕

i=0
⊗iRn is the tensor algebra and I is its two-sided ideal defined by

I = 〈{eiej + ejei + 2δij}〉. The Clifford algebra C(Rn) is a Z-graded vector space
C0(Rn)⊕C1(Rn)⊕ · · · ⊕Cn(Rn), where Ci(Rn) is the vector subspace of C(Rn) spanned
by {ej1 · · · eji

| j1 < · · · < ji}. We set C+(Rn) = ⊕
i=0

C2i(Rn) and C−(Rn) = ⊕
i=1

C2i−1(Rn).

The Clifford algebra C(Rn) has a Z2-grading (super) algebra structure,

C(Rn) = C+(Rn)⊕ C−(Rn),

C± · C± ⊂ C+, C± · C∓ ⊂ C−.

For a finite ordered sequence I = (i1, . . . , ij) of distinct suffices i1, . . . , ij ∈ {1, . . . , n},
we use a short-hand notation eI = ei1 · · · eij , L(I) = j. Here, note that for I = ∅,
we set e∅ = 1 and L(∅) = 0. We have a decomposition, Cj(Rn) = ⊕

L(I)=j
R〈eI〉. Now,

we assume that n = 4k for k ∈ Z>0. The chirality element γ = (
√−1)[

n+1
2 ]e1 · · · en =

(
√−1)2ke1 · · · e4k is of C(Rn) satisfies γ2 = 1.

Remark 1. Since the chirality element γ is independent of a choice of orthonormal basis
of R4k, the Z-grading structure of the C(R4k) is preserved under any special orthonormal
transformation of R4k.

Definition 2.1. Let eI be a base element of C(Rn). We call eI of type A if eI
2 = −1.

We call eI of type B if eI
2 = 1.

Proposition 2.1. A base eI of C(Rn) is of type A (or B ) if and only if T (I) :=
∑L(I)

l=0 l
is odd ( or even). Moreover, when L(I) is odd, eI is of type A (or B ) if and only if
eIγeI = γ (or −γ ). Furthermore, when L(I) is even, eI is of type A (or B ) if and only
if eIγeI = −γ (or γ ).

The proof of Proposition 2.1 is omitted, because it is a simple calculation. We have the
following table by using Proposition 2.1.
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Table 2.1.

L(I) 0 1 2 3 4 · · · 4k − 3 4k − 2 4k − 1 4k

T (I) =
∑L(I)

l=0 l 0 1 3 6 10 · · · (2k − 1)
×(4k − 3)

(2k − 1)
×(4k − 1)

2k
×(4k − 1)

2k
×(4k + 1)

Type B A A B B · · · A A B B

Next we consider useful vector subspaces of C−(Rn).

Definition 2.2. We set

A(Rn) =
k∑

j=1

C4j−3(Rn), B(Rn) =
k∑

j=1

C4j−1(Rn).

Table 2.1 shows that A(Rn) is spanned by the basis of type A and B(Rn) is spanned by
the basis of type B. For the chirality element γ, we have

Proposition 2.2.

A(Rn) ∼=
γ

B(Rn), C−(Rn) = A(Rn)⊕B(Rn).

Definition 2.3. We set

C+(Rn) =
1 + γ

2
C(Rn), C−(Rn) =

1− γ

2
C(Rn).

The Clifford algebra has a decomposition:

C(Rn) = C+
+(Rn)⊕ C+

−(Rn)⊕ C−
+(Rn)⊕ C−

−(Rn).

Then C(Rn) satisfies the following property:

Proposition 2.3. The Clifford algebra C(Rn) satisfies the following property:

C+
+ · C+

+ ⊂ C+
+ , C+

− · C+
+ = {0}, C+

+ · C−
+ ⊂ C−

+ , C+
− · C−

+ = {0},
C+

+ · C+
− = {0}, C+

− · C+
− ⊂ C+

− , C+
+ · C−

− = {0}, C+
− · C−

− ⊂ C−
− ,

C−
− · C+

+ ⊂ C−
− , C−

+ · C+
+ = {0}, C−

− · C−
+ ⊂ C+

− , C−
+ · C−

+ = {0},
C−
− · C+

− = {0}, C−
+ · C+

− ⊂ C−
+ , C−

− · C−
− = {0}, C−

+ · C−
− ⊂ C+

+ .
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Proof. Let a, b ∈ C−
− . We write a =

∑
I:type A αI eI−γeI√

2
and b =

∑
J :type A βI eJ−γeJ√

2
. Then

we have

ab =
∑

I:type A

αI eI − γeI√
2

∑
J :type A

βJ eJ − γeJ√
2

=
∑

I,J :type A

αIβJ eIeJ − γeIeJ − eIγeJ + γeIγeJ

2

= 0.

Here we have used the fact that if L(I) is odd then eIγ = −γeI . Therefore we conclude
that C−

− ·C−
− = {0}. We can show the rest of the cases by the same method as the above

computation. ¤

Definition 2.4. The linear map # of C−
±(Rn) to C−

∓(Rn) is defined by

#

( ∑
I:type A

αI eI ± γeI√
2

)
=

∑
I:type A

αI eI ∓ γeI√
2

for each
∑

I:type A αI eI±γeI√
2

∈ C±(Rn). We denote #(a) by a#. We also use the formal

notation

b] =
∑

I,J :odd, type A

βI,J eIeJ ∓ γeIeJ√
2

for b =
∑

I,J :odd, type A βI,J eIeJ±γeIeJ√
2

∈ C+
±(Rn).

Lemma 2.1. For any a ∈ C−
±(Rn) and b ∈ C−

±(Rn), we have the formula:

(ab)# = a#b#.

Proof. We prove the formula only in case a ∈ C−
− , b ∈ C−

+ . In the other cases, we can
prove them similarly. We write a =

∑
I:A type αI eI−γeI√

2
and b =

∑
J :A type βJ eJ+γeJ√

2
. Then
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we have

(ab)# =

( ∑
I:type A

αI eI − γeI√
2

∑
I:type A

βJ eJ + γeJ√
2

)

#

=

( ∑
I,J :type A

αIβJ eIeJ − γeIeJ + eIγeJ − γeIγeJ

2

)

#

=

( ∑
I,J :type A

αIβJ(eIeJ − γeIeJ)

)

#

=
∑

I,J :type A

αIβJ(eIeJ + γeIeJ),

and

a#b# =
∑

I:type A

αI eI + γeI√
2

∑
I:type A

βJ eJ − γeJ√
2

=
∑

I,J :type A

αIβJ eIeJ + γeIeJ − eIγeJ − γeIγeJ

2

=
∑

I,J :type A

αIβJ(eIeJ + γeIeJ).

Therefore we have the lemma. ¤

Definition 2.5. For each a ∈ C−
−(Rn), we define δ̂(a) ∈ C+

+(Rn) as follows: We write

a =
∑

I:type A αI eI−γeI√
2

. Then δ̂(a) is given by

δ̂(a) =
∑

I 6=J :type A
eIeJ=eJeI

αIαJ(eIeJ + γeIeJ).

Lemma 2.2. For any a ∈ C−
−(Rn), we have the following formulas:

a#a = −(1 + γ)|a|2 + δ̂(a), aa# = −(1− γ)|a|2 + δ̂(a)#.

Proof. We write a =
∑

I:type A αI eI−γeI√
2

. Then we have

a#a =
∑

I:type A

αI eI + γeI√
2

∑
J :type A

αJ eJ − γeJ√
2

=
∑

I,J :type A

αIαJ(eIeJ + γeIeJ).
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Since e2
I = −1 for each I of type A, we have

a#a =
∑

I(=J):type A

αIαI(eIeJ − γeIeI) +
∑

I 6=J :type A

αIαJ(eIeJ − γeIeJ)

=
∑

I(=J):type A

αIαI(eIeJ − γeIeI) +
∑

I 6=J :type A
eIeJ=eJeI

αIαJ(eIeJ − γeIeJ)

=
∑

I:type A

(αI)2(−1− γ) + δ̂(a)

= −(1 + γ)|a|2 + δ̂(a).

In similar way, we have the second formula. ¤

Remark 2. Since eIeJeIeJ = eIeJeJeI = (−1)2 = 1, we conclude that δ̂(a) is of type B.

Therefore δ̂(a) ∈ ⊕k−1
i=2 C4i(Rn).

Remark 3. On R4, A(R4) is spanned by {e1, e2, e3, e4} such that eiej = −ejei. Thus we

have δ̂(a) = 0 for any a ∈ C−
−(R4). Therefore we have a#a = −(1 + γ)|a|2.

Corollary 2.1. For any a ∈ C−
−(Rn)⊗R

√−1R, we have the following formulas:

a#a = (1 + γ)|a|2 + δ̂(a), aa# = (1− γ)|a|2 + δ̂(a)#.

Lemma 2.3. For any a, b ∈ C−
−(Rn)⊗R

√−1R, the inner product 〈a, b〉 is equal to the
coefficient of 1 + γ of a#b.

Proof. We write a =
∑

I:type A αI eI−γeI√
2

and b =
∑

J :type A βJ eJ−γeJ√
2

. Then

〈a, b〉 =
∑

I:type A

αIβI = −
∑

I:type A

αIβI .

In another way,

a#b =
∑

I:type A

αI eI + γeI√
2

∑
J :type A

βJ eJ − γeJ√
2

=
∑

I,J :type A

αIβJ(eIeJ + γeIeJ)

= −
∑

I:type A

αIβI(1 + γ) +
∑

I 6=J :type A

αIβJ(eIeJ + γeIeJ).
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Therefore we conclude the assertion of the lemma. ¤

Lemma 2.4. For a ∈ C−
−(Rn)⊗R

√−1R, the inequality

0 ≤ 〈aδ̂(a), a〉 ≤ 4|a|4

holds.

Proof. We write a =
∑

I:type A αI eI−γeI√
2

. For simplicity, we denote the coefficient of 1+ γ

of any b ∈ C+
+⊗R

√−1R by [b]. Since

aa#a = (1− γ)|a|2a + aδ̂(a) = (1− γ)|a|2a + δ̂(a)#a,

we have by Lemma 2.3

〈aδ̂(a), a〉 = 〈δ̂(a)#a, a〉
=

[
δ̂(a)a#a

]

=
[
δ̂(a){(1 + γ)|a|2 + δ̂(a)}

]

=
[
δ̂(a)δ̂(a)

]
.

Hence we compute δ̂(a)δ̂(a). Indeed,

δ̂(a)δ̂(a) =
∑

I 6=J :type A
eIeJ=eJeI

αIαJ(eIeJ + γeIeJ)
∑

K 6=L:type A
eKeL=eLeK

αKαL(eKeL + γeLeK)

= 2
∑

I 6=J,K 6=L:type A
eIeJ=eJeI

eKeL=eLeK

αIαJαKαL(eIeJeKeL + γeIeJeKeL).

Thus we have

[δ̂(a)δ̂(a)] = 2
∑

I 6=J :type A
eIeJ=eJeI

αIαJαIαJ(eIeJeIeJ + γeIeJeIeJ)

+ 2
∑

I 6=J :type A
eIeJ=eJeI

αIαJαJαI(eIeJeJeI + γeIeJeJeI)

= 4
∑

I 6=J :type A
eIeJ=eJeI

(αI)2(αJ)2.
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On the other hand, the inner product 〈aa#a, a〉 = 2|a|2 + 〈δ̂(a)#a, a〉 is re-computed as
follows:

〈aa#a, a〉 =

〈√
2

∑
I,J,K:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉

= −2

〈 ∑
I=J,K:type A

(αI)2αK eK − γeK√
2

,
∑

L:type A

eL − γeL√
2

〉

− 2

〈 ∑
J=K,I:type A

(αJ)2αI eI − γeI√
2

,
∑

L:type A

eL − γeL√
2

〉

− 2

〈 ∑
K=I,J :type A

(αK)2αJ eJ − γeJ√
2

,
∑

L:type A

eL − γeL√
2

〉

+ 4
√

2

〈 ∑

I(=J=K):type A

(αI)3 eI − γeI√
2

,
∑

L:type A

αL eL − γeL√
2

〉

+
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉

= 6|a|4 − 4
∑

I:type A

(αI)4

+
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉

= 6|a|2 − 4

{ ∑
I:type A

(αI)2
∑

J :type A

(αJ)2 −
∑

I 6=J

(αI)2(αJ)2

}

+
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉

= 6|a|4 − 4|a|4 + 4
∑

I 6=J :type A

(αI)2(αJ)2

+
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉

= 2|a|4 + 4
∑

I 6=J :type A

(αI)2(αJ)2

+
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉
.
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Therefore we have

〈δ̂(a)#a, a〉 = 4
∑

I 6=J :type A
eIeJ=eJeI

(αI)2(αJ)2

= 4
∑

I 6=J :type A

(αI)2(αJ)2

−
√

2

〈 ∑

I 6=J,J 6=K,K 6=I:type A

αIαJαK(eIeJeK − γeIeJeK),
∑

L:type A

αL eL − γeL√
2

〉
.

Therefore we conclude that
0 ≤ 〈δ̂(a)#a, a〉 ≤ 4|a|4.

¤

Corollary 2.2. For any a ∈ C−
−(Rn)⊗R

√−1R, we have

2|a|4 ≤ 〈aa#a, a〉 ≤ 6|a|4.

Proof. This corollary immediately follows from Lemma 2.4. ¤

Let X be a smooth closed oriented manifold of dimension n = 4k with a Riemannian
metric g. We denote by FX the orthonormal frame bundle of TX. FX is a principal
SO(n)-bundle. A special orthogonal transformation of Rn induces an automorphism of
C(Rn) preserving the norm. Thus we have a representation cl : SO(n) −→ Aut(C(Rn)).

Definition 2.6. The Clifford bundle C(X) over X is defined by

C(X) = FX×clC(Rn).

Furthermore, two sub-vector bundles A(X) and B(X) of C(X) are defined by

A(X) = FX×clA(Rn),

B(X) = FX×clB(Rn).

We simply write C = C(X), A = A(X) and B = B(X). The Clifford bundle has natural
Z2-graded algebra structure,

C(X) = C+(X)⊕ C−(X),

where both C+(X) and C−(X) are C+(X)-modules and C± ·C± ⊂ C+, C± ·C∓ ⊂ C−.
C−(X) decomposes into

C−(X) = A(X)⊕B(X)

as a vector bundle. We denote by C×(Rn) the set of all units in C(Rn). We recall that
Pin(n) = 〈{v ∈ Rn | |v| = 1}〉 ⊂ C×(Rn) and Spin(n) = Pin(n) ∩ C+(Rn).



A CLIFFORDIAN MONOPOLE EQUATION 13

Definition 2.7. A smooth oriented manifold X is called a spin manifold if there exists
a principal Spin(n)-bundle PSpin(n) over X and a double covering map ρ of PSpin(n) to FX

such that the diagram

PSpin(n)
ρ−−−→ FX

π̃

y π

y
X X

is commutative, where π̃ and π are the projections to X. The isomorphism class of PSpin(n)

is called a spin structure on X.

X is spin if and only if w2(X) = 0. For n ≥ 3, Spin(n) is a universal double covering
of SO(n). The space Spin(X) of all spin structures on X has an affine space structure
Spin(X) = s+H1(X;Z2) where s ∈ Spin(X). The complex spin representation of Spin(n)
is an irreducible (Z2-grading) unitary representation

∆: Spin(n) −−−→ GL(M ;C),

where

M =

{
C24k

n = 8k, k = 1, 2, . . .

H22k+1
n = 8k + 4, k = 0, 1, . . .

,

because the maximal commuting subalgebra Kn for real representations of C(Rn) is
C if n ≡ 0 (mod 8), H if n ≡ 4 (mod 8) (,see Atiyah-Bott-Shapiro [2] and Lawson-
Michelsohn [20]). If n is even, then the Spin(n)-module M has the Z2-grading C(Rn)-
module structure:

C± ·M± ⊂ M+, C± ·M∓ ⊂ M−.

In particular, if n = 4k, then M± is the ±1-eigenspace of the chirality operator γ. There-
fore M has the following property

C+
+ ·M+ ⊂ M+, C−

+ ·M+ = {0}, C+
− ·M+ = {0}, C−

− ·M+ ⊂ M−

C+
+ ·M− = {0}, C−

+ ·M− ⊂ M+, C+
− ·M− ⊂ M−, C−

− ·M− = {0}.

Lemma 2.5. For a ∈ C−
−(Rn)⊗R

√−1R and s ∈ M+, we have

〈a#as, s〉M+ = 〈as, as〉M− .
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Proof. We write a =
∑

I:type A αI eI−γeI√
2

. Then we have

〈a#as, s〉M+ =

〈 ∑
I,J :type A

αIαJ(eIeJ + γeIeJ)s, s

〉

M+

= 2
∑

I,J :type A

αIαJ〈eIeJs, s〉M+

= −2
∑

I,J :type A

αIαJ〈eJs, eIs〉M−

= 2
∑

I,J :type A

αIαJ〈eJs, eIs〉M−

= 2

〈 ∑
J :type A

αJeJs,
∑

I:type A

αIeIs

〉

M−

=

〈 ∑
J :type A

αJ eJ − γeJ√
2

s,
∑

I:type A

αI eI − γeI√
2

s

〉

M−

= 〈as, as〉M− .

¤

Lemma 2.6. For a ∈ C−
−(Rn)⊗R

√−1R and s ∈ M+, we have

〈δ̂(a)s, s〉M+ = |as|2 − 2|a|2|s|2.

Proof. By Lemma 2.5, we have

|as|2 = 〈as, as〉M−

= 〈a#as, s〉M+

= 2|a|2|s|2 + 〈δ̂(a)s, s〉M+ .

¤

Corollary 2.3. For a ∈ C−
−(Rn)⊗R

√−1R and s ∈ M+, we have the following inequality:

−2|a|2|s|2 ≤ 〈δ̂(a)s, s〉M+ ≤ 0.

Proof. Since 0 ≤ |as|2 ≤ 2|a|2|s|2, we conclude the assertion of the corollary. ¤

Corollary 2.4. For a ∈ C−
−(Rn)⊗R

√−1R and s ∈ M+, we have the following inequality:

0 ≤ 〈a#as, s〉M+ ≤ 2|a|2|s|2.
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Proof. This corollary immediately follows from the above corollary. ¤

Definition 2.8. When X has a spin structure, we define the (complex) spinor bundle by

S = PSpin(n)×∆M.

There are well-known facts;

C(X) ∼= PSpin(n)×AdC(Rn), End(S) ∼= C(X)⊗RC.

The spinor bundle S has a Z2-grading C(X)-module structure,

S = S+ ⊕ S−,

where S+, S− are C+(X)-module such that

C± · S± ⊂ S+, C± · S∓ ⊂ S−.

From now on, we assume that X is a closed spin manifold of dimension n = 4k.

Definition 2.9. The chirality operator γ is given by the local expression:

γ = (
√−1)[n+1

2
]e1e2 · · · en

= (
√−1)2ke1e2 · · · e4k−1e4k,

where (e1, . . . , e4k) is a local frame of C1 = TX. The chirality operator γ is independent
of the choice of a local frame of TX. γ ∈ Γ (C4k(X)) ⊂ Γ (C(X)).

In general, γ ∈ Γ (C(X)⊗RC) holds. The chirality operator induces an isomorphism of
C(X) satisfying γ2 = 1. We write the ±1-eigen spaces of γ by

C±(X) =
1± γ

2
C(X).

We have an orthogonal decomposition of C(X) as a vector bundle:

C(X) = C+
+(X)⊕ C+

−(X)⊕ C−
+(X)⊕ C−

−(X).

We can regard the halves of the spinor bundle S± as the ±1-eigen space of γ respectively
(,see Berline-Getzler-Vergne [8]). Therefore the spinor bundle S(X) has the following
property:

C+
+ · S+ ⊂ S+, C−

+ · S+ = {0}, C+
− · S+ = {0}, C−

− · S+ ⊂ S−

C+
+ · S− = {0}, C−

+ · S− ⊂ S+, C+
− · S− ⊂ S−, C−

− · S− = {0}.
A C(X)-module bundle E is a Z2-grading vector bundle over X such that E = E+⊕E−

where E± are C+(X)-modules and C± · E± ⊂ E+, C± · E∓ ⊂ E−. We can consider the
Cliffordian multiplication

Γ (C)×Γ (E) −−−→ Γ (E)

ξ × s 7−→ ξs
.
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Definition 2.10. Let ∇ be a connection on a C(X)-module E compatible with metric
on E . The Dirac operator /∂∇ for ∇ is defined as the composition of maps:

/∂∇ : Γ (E)
∇−−−→ Γ (T ∗(X)⊗ E) −−−→ Γ (E),

where T ∗X = C1(X) ⊂ C(X) and Γ (T ∗X ⊗ E) −→ Γ (E) is the Clifford multiplication.

The Dirac operator /∂∇ is a 1st order linear elliptic operator on Γ (E). /∂∇ has an odd
parity with respect to Z2-grading on E . The Clifford bundle C and the spinor bundle S are
both C(X)-modules over X. The Levi-Civita connection ∇X on TX with respect to the
Riemannian metric g induces connections on C and S. We denote by /∂S and /∂C the Dirac
operators on Γ (S) and Γ (C) for the connections induced by ∇X on C and S respectively.
In particular, we can consider the half of the Dirac operator /∂S : Γ (S+) −→ Γ (S−) and
the quarter of the Dirac operator /∂C : Γ (C−

−) −→ Γ (C+
+), because the Dirac operator

/∂C and the chirality operator γ anti-commute to each other , i.e., /∂Cγ = −γ/∂C . These
are also 1-st order linear elliptic operators. Let E be a vector bundle over X. Then we
can consider the extensions of the Dirac operators, /∂S : Γ (S ⊗ E) −→ Γ (S ⊗ E) and
/∂C : Γ (C ⊗AdPE) −→ Γ (C ⊗AdPE) with respect to a connection on E compatible with
a Hermitian metric on E, where PE is principal SO(r)-bundle associated with E and
r = rankE. We call them the twisted Dirac operators.

We now study the quarter of the Dirac operator /∂C : Γ (C−
−) −→ Γ (C+

+). We call the
isomorphism as vector bundles

σ : C(X)
∼=−−−→ Λ∗T ∗X

the symbol map. Let c = σ−1. We call c the quantization map. The Hodge’s ∗-operator
on Λ∗T ∗X induces a linear isomorphism ∗ : Ω∗(X) −→ Ω∗(X) satisfying ∗2 = 1. Let

Ω∗
± =

1± ∗
2

Ω∗

be the ±1-eigen spaces of ∗ respectively. Let Ω+ (resp. Ω−) be the space of even (resp.
odd) differential forms. Then Ω∗ has a decomposition

Ω∗ = Ω+
+ ⊕ Ω+

− ⊕ Ω−
+ ⊕ Ω−

−.

The symbol map σ induces the isomorphisms Ωα
β
∼= Γ (Cα

β ), where α, β ∈ {±}. Let
d : Ω∗ −→ Ω∗ be the exterior derivative and d∗ the formal adjoint operator of d.

Lemma 2.7. (Gauss-Bonnet-Chern) The operator (d + d∗) : Ω+ −→ Ω− is a 1st
order elliptic operator and

indexR (d + d∗) =
1

(2π)2k

∫

X

Pf(−R) = χ(X).

Here R is the Riemannian curvature form of ∇X , Pf(−R) = det
1
2 (−R) =

∫
Berezin

exp(−R)
and χ(X) is the Euler number of X.
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On the other hand

Lemma 2.8. (Hirzebruch) The operator (d + d∗) : Ω+ −→ Ω− is a 1st order elliptic
operator and

indexR (d + d∗) =
1

(
√−1π)2k

∫

X

L(X) = sign(X).

Here L(X) = det
1
2

(
R/2

tanh(R/2)

)
and sign(X) is the signature of X.

The following diagram

Γ (C−
−)

/∂C−−−→ Γ (C+
+)

σ

y
yσ

Ω+
+

d+d∗−−−→ Ω−
−

is commutative, since /∂Cγ = −γ/∂C . Therefore we have

Lemma 2.9. The quarter of the Dirac operator /∂C : Γ (C−
−) −→ Γ (C+

+) has

indexR /∂C = − 1

2(2π)2k

∫

X

(
Pf(−R) + (−1)k2kL(X)

)

= −χ(X) + sign(X)

2
.

See Atiyah-Hitchin-Singer [4] and Atiyah-Savilian [5] in 4-dimensional case. For the index
problem, the operator (d + d∗) : Ω+

+ −→ Ω−
− is equivalent to the extended AHS-complex

0 −−−→ Ω0 d−−−→ Ω1 d−−−→ · · · d−−−→ Ω2k−1 d+−−−→ Ω2k
+ −−−→ 0,

where d+ = p+ ◦ d and p+ : Ω2k −→ Ω2k
+ is the projection.

In the rest of this section, we explain the relation between the # operator and the Dirac
operator /∂. For any section ξ ∈ Γ (C−

−), ξ# ∈ Γ (C−
+) globally exists. Also we can consider

the products ξ#ξ ∈ Γ (C+
+) and ξξ# ∈ Γ (C−

−) as global sections.

Lemma 2.10. For a pair (φ, ξ) ∈ Γ (S+) ⊕ Γ (C−
−) satisfying the relation /∂Sφ = ξφ, we

have the following formula:

/∂S
2φ = (/∂Cξ)φ + ξ#ξφ.

Proof. We choose a normal coordinate (U, {x1, x2, . . . , xn}) around a point x ∈ X. We
assume that (e1 = c(dx1), e2 = c(dx2), . . . en = c(dxn)) is an orthonormal basis on U which
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satisfies the condition ∇ei
ej = 0 for all i, j ∈ {1, 2, . . . , n}. We can write ξ =

∑
I:odd αIeI .

Then αI = −αJ for eI = γeJ . We have

/∂S
2φ = /∂S(ξφ)

= (/∂Cξ)φ + c(ξ∇φ)

= (/∂Cξ)φ +
n∑

i=1

ei

∑

I:odd

αIeI∇iφ

= (/∂Cξ)φ−
n∑

i=1

∑

I:odd

αIeIei∇iφ + 2
n∑

i=1

∑
i∈I

αIeIei∇iφ

= (/∂Cξ)φ− ξ(/∂Sφ) + 2
n∑

i=1

∑
i∈I

αIeIei∇iφ.

Since C−
−S+ = {0}, we have ξ(/∂Sφ) = 0. Since

∑n
i=1

∑
i∈I αIeIei∇iφ ∈ Γ (S+), we have

n∑
i=1

∑
i∈I

αIeIei∇iφ = γ

n∑
i=1

∑
i∈I

αIeIei∇iφ

=
n∑

i=1

∑
i∈I

αI(γeI)ei∇iφ.

Therefore we have

2
n∑

i=1

∑
i∈I

αIeIei∇iφ =
n∑

i=1

∑
i∈I

αI(eI + γeI)ei∇iφ.

Since for a fixed index i ∈ {1, 2, . . . , n}, we can write
∑
i∈I

αI(eI + γeI) = ξ#,

we have

2
n∑

i=1

∑
i∈I

αIeIei∇iφ = ξ#(/∂Sφ)

= ξ#ξφ.

Therefore we have the lemma. ¤

Remark 4. If X is 4-dimensional, then, by Remark 3, Lemma 2.10 implies that /∂S
2φ =

(/∂Cξ)φ− 2|ξ|2φ.
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Lemma 2.11. For any ξ ∈ Γ (C−
±), we have the local formula:

/∂Cξ# = (/∂Cξ)#.

(Note that this formula essencially is a formal expression, because ] : C+
± −→ C+

∓ do not
globally exist. See Definition 2.4)

Proof. This lemma is easily obtained by direct calculations. ¤

Lemma 2.12. For any φ ∈ Γ (S+⊗RC) and ξ ∈ Γ (C−
−⊗R

√−1R), we obtain

〈ξ#ξφ, φ〉S+⊗RC = 2|ξ|2|φ|2 + 〈δ̂(ξ)φ, φ〉S+⊗RC,

and
−2|ξ|2|φ|2 ≤ 〈δ̂(ξ)φ, φ〉S+⊗RC ≤ 0.

Proof. This lemma immediately follows from Corollaries 2.3 and 2.4. ¤

Lemma 2.13. For any ξ ∈ Γ (C−
−⊗R

√−1R), we have the following inequality:

2|ξ|4 ≤ 〈ξξ#ξ, ξ〉 ≤ 6|ξ|4.

Proof. This lemma immediately follows from Corollary 2.2. ¤

3. A Cliffordian monopole equation on a spin 4k-manifold

Let X be a smooth connected closed spin manifold of dimension n = 4k with a Rie-
mannian metric g. Let us assume that X is connected. Let L be a complex line bundle
over X with a Hermitian metric h. Let PL be a principal U(1)-bundle over X such that
L = PL×U(1)C and AdPL = PL×Adu(1). We have that AdPL = X × √−1R. Let A
be a connection on L compatible with the metric h. We only treat the (twisted) Dirac
operators /∂S and /∂C for the Levi-Civita connection on X with respect to g and Hermitian
connection A with respect to h. We assume the following for the technical reason of the
compactness of the solutions.

Assumption 3.1. Hi
DR(X) = 0 for odd i and 1 + b2 + · · ·+ b2k−1 + b2k

+ > 1.

We remark that the set of all 4k-manifolds satisfying the assumption is closed with respect
to the operations × (direct product) and ] (connected sum). We use the following short-
hand notation:

CL = C⊗RAdPL =
√−1C,

SL = S⊗CL.
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Definition 3.1. For ξ ∈ Γ (CL
−
−) , the Cliffordian ASD-equation is given by

/∂Cξ = −√−1ξ#ξ,

where /∂C : Γ (CL
−
−) −→ Γ (CL

+
+) is the quarter of the twisted Dirac operator.

We define D1 = /∂C : Γ (CL
−
−) −→ Γ (CL

+
+). We define Q1 : Γ (CL

−
−) −→ Γ (CL

−
−) by

Q1(ξ) =
√−1ξ#ξ.

Then we can write the Cliffordian ASD equation as

D1 + Q1 : Γ (CL
−
−) −−−→ Γ (CL

+
+).

For a non-negative integer l, the Sobolev space L2
l (F ) for a Hermitian vector bundle F

over X is the Banach completion of the space Γ (F ) of all sections of F with respect to
the L2

l -norm

‖f‖L2
l

=

∫

X

l∑
i=0

|∇(i)
F f |2dvol

for each f ∈ Γ (F ), where ∇F is a unitary connection on F and ∇(i)
F = ∇F ◦ · · · ◦ ∇F

(i-times).
We denote by H the space

{
η ∈ Ll

2(CL
+
+) | /∂Cη = 0

}
.

Definition 3.2. Fix an integer l > 2k. The perturbed Cliffordian ASD-equation param-
eterized by η ∈ H is defined by

/∂Cξ = −√−1ξ#ξ + η,(2)

for ξ ∈ L2
l (CL

−
−), where /∂C : L2

l (CL
−
−) −→ L2

l (CL
+
+).

Definition 3.3. We define the space SASD,η by

SASD,η = (D1 + Q1 − η)−1(0).

In particular, we define

SASD = SASD,0 = (D1 + Q1)
−1(0).

Theorem 3.1. If SASD,η exists, then SASD,η is a smooth oriented compact manifold of

dimSASD,η = −χ(X) + sign(X)

2
+ 1

for a generic perturbation η ∈ H satisfying η 6= 0. Also SASD is compact.

Corollary 3.1. SASD,η = ∅ for a generic perturbation η ∈ H satisfying η 6= 0.
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Proof. The virtual dimension of SASD,η is

−χ(X) + sign(X)

2
+ 1 = −(b0 + b2 + · · ·+ b2k

+ ) + 1 < 0,

by Assumption 3.1. ¤

The proof of Theorem 3.1 is given in Sections 4-5.

Definition 3.4. For (φ, ξ) ∈ Γ (S+
L ) ⊕ Γ (CL

−
−), the Cliffordian monopole equation is

defined by {
/∂Sφ = ξφ,

/∂Cξ = −(φ⊗ φ∗)0 −
√−1ξ#ξ

,(3)

where (φ⊗ φ∗)0 is the purely imaginary part of φ⊗ φ∗, i.e.,

(φ⊗ φ∗)0 =
1 + γ

26k−2

∑

I,J :odd,type A,
eIeJ=−eJeI

〈eIeJφ, φ〉eIeJ .

We have 〈(φ⊗ φ∗)0φ, φ〉 = 1
2
|φ|4. See Appendix 2.

Let V = Γ (S+
L )⊕Γ (CL

−
−) and W = Γ (S−L )⊕Γ (CL

+
+). Let D =

(
/∂S 0
0 /∂C

)
: V −→ W .

The quadratic map Q : V −→ W is defined by

Q

(
φ
ξ

)
=

( −ξφ
(φ⊗ φ∗)0 +

√−1ξ#ξ

)
.

Then we can write the Cliffordian monopole equation as

D + Q : V −−−→ W.(4)

Definition 3.5. The perturbed Cliffordian monopole equation perturbed by η ∈ H is
defined by {

/∂Sφ = ξφ,

/∂Cξ = −(φ⊗ φ∗)0 −
√−1ξ#ξ + η

(5)

for (φ, ξ) ∈ L2
l (S

+
L )⊕ L2

l (CL
−
−).

Definition 3.6. We define the space SMON,η of all solutions of the perturbed Cliffordian
monopole equation perturbed by η by

SMON,η = (D + Q− η)−1(0).
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Furthermore we define the irreducible part SMON,η
∗ of SMON,η by

SMON,η
∗ = SMON,η − SASD,η,

where the closed embedding

SASD,η ↪→ SMON,η

is defined by sending each ξ ∈ SASD,η to (0, ξ) ∈ SMON,η. In particular, we set SMON =
SMON,0.

Theorem 3.2. If SMON,η
∗ exists, then SMON,η

∗ is a smooth oriented manifold of dimension

dimSMON,η
∗ = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X) + 1,

for a generic perturbation η ∈ Γ (CL
+
+) satisfying η 6= 0 Furthermore, SMON,η is compact.

In particular, SMON is compact. Here

ch(L) = tr (exp(−FA))

and

Â(X) = det
1
2

(
R/2

sinh(R/2)

)
,

where FA is the curvature form of A.

Corollary 3.2. SMON,η
∗ = SMON,η is compact for a generic perturbation η 6= 0.

Proof. This lemma immediately follows from Corollary 3.1. ¤.

This theorem is proved in Sections 4-5.
The group U(1) = S1 ⊂ C acts on Γ (S±L ) by

Γ (S±L )× S1 −−−→ Γ (S±L )

φ× e
√−1θ 7−→ e−

√−1θφ
.

On the other hand S1 acts trivially on Γ (CL
±
±). When the line bundle L is trivial and

n = 8k + 4, k = 0, 1, . . ., Γ (S±) is considered as an infinite dimensional H-module such
that Γ (S±) ∼= H∞. Then the quaternion j ∈ H, j2 = −1 acts on Γ (S±L ) on the right via
the multiplication Furthermore, j acts on Γ (CL

±
±) by multiplying the number −1. Thus,

in this case, we can consider the Lie group Pin(2) = 〈S1, j〉 ⊂ H× acts on V and W
on the right. It is easy to check that the (perturbed) Cliffordian monopole equation is
S1-equivariant. But, even if the line bundle L is trivial and n = 8k + 4, k = 0, 1, . . ., it
is not Pin(2)-equivariant, because the term −√−1ξ#ξ breaks the Z2-symmetry.
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Definition 3.7. The moduli space Mη of SMON,η is defined by

Mη = SMON,η/S
1.

Since the circle group S1 acts freely on SMON,η, SMON,η is a principal S1-bundle over Mη,
and Mη is a smooth oriented closed manifold of dimension

dimMη = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X),

if SMON,η exists. We remark that if SMON,η exists, then dim SMON,η must be greater than
or equal to 1.

4. The manifold structure on SMON,η

Lemma 4.1. There exists a Baire subset B of H such that for each η ∈ B satisfying
η 6= 0, SASD,η is a smooth oriented manifold of dimension

dimSASD,η = −χ(X) + sign(X)

2
+ 1,

if SASD,η exists.

The proof of this lemma is the same as the proofs of the following two lemmas. We omit
the proof of this lemma.

Lemma 4.2. There exists a Baire subset B of H such that for each η ∈ B satisfying
η 6= 0, SMON,η

∗ is a smooth manifold of

dimSMON,η
∗ = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X) + 1,

if SMON,η
∗ exists.

Proof. We define a map

J : L2
l (S

+
L )⊕ L2

l (CL
−
−)⊕H −−−→ L2

l−1(S
−
L )⊕ L2

l−1(CL
+
+)

by

J(φ, ξ, η) = (D + Q− η) (φ, ξ).

Let S = J−1(0). We denote by δJ the Fréchet differential of J at (φ, ξ, η). For smooth
curves {φt} ⊂ L2

l (S
+
L ), {ξt} ⊂ L2

l (CL
−
−) and {ηt} ⊂ H such that φ = φ0, ξ = ξ0 and

η = η0, we set

φ̇ =
d

dt

∣∣∣∣∣
t=0

φt, ξ̇ =
d

dt

∣∣∣∣∣
t=0

ξt, η̇ =
d

dt

∣∣∣∣∣
t=0

ηt,
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respectively. The Fréchet differential δJ is given by

δJ((φ̇, ξ̇), η̇) =
d

dt

∣∣∣∣∣
t=0

(D +Q− ηt) (φt, ξt)

=

(
/∂Sφ̇− ξ̇φ− ξφ̇

/∂C ξ̇ + (φ̇⊗ φ∗)0 + (φ⊗ φ̇∗)0 +
√−1ξ̇#ξ +

√−1ξξ̇# − η̇

)
.

We have δJ = δ1J ⊕ δ2J , where

δ1J(φ̇, ξ̇) =

(
/∂Sφ̇− ξ̇φ− ξφ̇

/∂C ξ̇ + (φ̇⊗ φ∗)0 + (φ⊗ φ̇∗)0 +
√−1ξ̇#ξ +

√−1ξξ̇#

)

and

δ2J(η̇) =

(
0
−η̇

)
.

Since δ1J is an (real) elliptic operator, δ1J is Fredholm with

indexR δ1J = 2 indexC
(
/∂S : L2

l (S
+
L ) −→ L2

l−1(S
−
L )

)
+indexR

(
/∂C : L2

l (CL
−
−) −→ L2

l−1(CL
+
+)

)
.

By using Lemma 2.9 and the Atiyah-Singer index theorem, we have

indexRδ1J = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X).

Let R = 1+γX

2

√−1R ⊂ L2
l−1(CL

+
+) and L = R⊥ ⊂ L2

l−1(CL
+
+). Now we show that

the image of δ1J is contained in L2
l−1(SL

−) ⊕ L, and that δ1J : L2
l (SL

+) ⊕ L2
l (CL

−
−) −→

L2
l (SL

−) ⊕ L is surjective . We consider the formal adjoint operator (δ1J)∗ of δ1J . The
restriction of (δ1J)∗ on 0⊕R givn by

0⊕R −−−→ L2
l (SL

−)⊕ L2
l (CL

−
−)

(0, s) 7−→ (sφ, 0)
.

Since φ 6= 0, we have Ker (δ1J)∗|R = 0. Therefore we concludeR ⊂ Coker δ1J . We assume
that η 6= 0 then the perturbed Cliffordian monopole equation has a no trivial solution.
Suppose that ψ ∈ Ll−1(S

−
L ) and ν ∈ L are L2-orthogonal to the images /∂S : L2

l (S
+
L ) −→

L2
l−1(S

−
L ) and /∂C : L2

l (CL
−
−) −→ L2

l−1(CL
+
+) respectively. Furthermore, suppose that (ψ, ν)

is orthogonal to the image of δ1J and (ψ, ν) 6= 0. By elliptic regularity, (ψ, ν) does not
vanish on any open subset of X. Similarly (φ, ξ) also does not vanish on any open subset
of X. Let U ⊂ X be sufficiently small ball centered at a point x0 where (φ, ξ) and (ψ, ν)
are non-zero. We may assume that they are almost constant over U . Then there exists a
vector (φ̇, ξ̇) ∈ (S+

L ⊕ CL
−
−)x0 such that

Re
(
〈−ξ̇φ(x0)− ξ(x0)φ̇, ψ(x0)〉

)
6= 0

and

Re
(
〈(φ̇⊗ φ∗(x0))0 + (φ(x0)⊗ φ̇∗(x0))0 +

√−1(ξ̇#ξ(x0) + ξ(x0)ξ̇#), ν(x0)〉
)
6= 0.
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We can extend (φ̇, ξ̇) to a global section (φ̇, ξ̇) ∈ Γ (S+
L ) ⊕ Γ (CL

−
−) vanishing outside U

such that ∫

X

Re
(
〈−ξ̇φ− ξφ̇, ψ〉

)
dvol 6= 0

and ∫

X

Re
(
〈(φ̇⊗ φ∗)0 + (φ⊗ φ̇∗)0 +

√−1(ξ̇#ξ + ξξ̇#), ν〉
)

dvol 6= 0,

by using a cut-off function. This means that (ψ, ν) is not orthogonal to δ1J(φ̇, ξ̇). This
is contradiction. Thus δ1J is surjective. Now we apply the inverse function theorem for
Banach spaces to our case. We conclude S is a Banach manifold. Here, we consider the
following diagram:

S ↪→ L2
l (S

+
L )⊕ L2

l (CL
−
−)×H

J−−−→ L2
l−1(S

−
L )⊕ Lyπ

yπ

H H

,

where π is the projection to the third factor and π = π|S . Then we can write SMON,η =
π−1(η). Since SASD,η = ∅, we have SMON,η

∗ = SMON,η. We consider the Fréchet differential
δπ of π. Then

Ker(δπ) =
{

((φ̇, ξ̇), η̇) | δJ((φ̇, ξ̇), η̇) = η̇ = 0
}

and

Im(δπ) =
{

η̇ | δJ((φ̇, ξ̇), η̇) = 0
}

= (δ2J)−1(Im(δ1J)).

Since δ1J is surjective, δπ is surjective and

Ker(δπ) = Ker(δ1J).

Therefore δπ is a Fredholm map with

indexR δπ = indexR δ1J + dim R

= −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X) + 1.

Now we apply the infinite dimensional version of the Sard-Smale theorem to our case.
There exists a Baire set B ⊂ H such that for each element η ∈ B with η 6= 0, the space
SMON,η

∗ = π−1(η) of the all solutions of the perturbed Cliffordian monopole equation is a
smooth manifold of dimension

dimSMON,η
∗ = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X) + 1.

¤

Let B be the same as in Lemma 4.2
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Lemma 4.3. For each η ∈ B satisfying η 6= 0, SMON,η
∗ is orientable. Furthermore, there

is a one to one correspondence between the orientations of SMON,η
∗ and those of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X)

as vector space over R.

Proof. The tangent space of SMON,η
∗ at a point (φ, ξ) ∈ SMON,η

∗ is isomorphic to the
kernel of the elliptic operator

D(φ,ξ) =

(
/∂S − ξ − • φ

(φ⊗ •∗)0 + (• ⊗ φ∗)0 /∂C +
√−1(•#ξ + ξ#•)

)
.

Let D =
{
D(φ,ξ) | (φ, ξ) ∈ SMON,η

∗}. Then D is an elliptic family parameterized by
SMON,η

∗. Thus SMON,η
∗ is orientable if and only if the index bundle indexD of D is

orientable. It is a well-known fact that indexD is orientable if and only if the determi-
nant line bundle det(indexD) is trivial. Since we may assume that CokerD(φ,ξ) is trivial
for (φ, ξ) ∈ SMON,η

∗, we have

det(indexD) =
⋃

(φ,ξ)∈SMON,η

ΛmaxKer D(φ,ξ).

On the other hand, we set

D(φ,ξ),t =

(
/∂S − ξ −(1− t) • φ

(1− t)(φ⊗ •∗)0 + (1− t)(• ⊗ φ∗)0 /∂C + (1− t)
√−1(•#ξ + ξ#•)

)
.

and Dt =
{
D(φ,ξ),t | (φ, ξ) ∈ SMON,η

∗} for t ∈ I = [0, 1]. Then {Dt}t∈I is an elliptic
family parameterized by SMON,η

∗ × I and det(index{Dt}t∈I) is a real line bundle over
SMON,η × I. The elliptic family {Dt}t∈I is the homotopy of D0 = D to D1. We now show
that det(index{Dt}t∈I) is trivial. By definition, det(index{Dt}t∈I)|t=1 = det(indexD1)
over SMON,η

∗ × {1}. We have

det(indexD1) ∼= det (index(/∂S − ξ))⊗ det (index(/∂C))

∼= det (index(/∂S − ξ))⊗ det
(
index((d + d∗) : Ω−

− −→ Ω+
+)

)
.

Since {(/∂S − ξ) : L2
l (S

+
L ) −→ L2

l−1(S
−
L )} is a family of complex linear operators,

detC (index(/∂S − ξ)) is a trivial complex line bundle over SMON,η
∗ and naturally oriented.

Furthermore, det
(
index((d + d∗) : Ω−

− −→ Ω+
+)

)
is clearly trivial and the orientation is

determined by the orientation of the determinant line bundle of the trivial family of the
extended AHS-complex

0 −−−→ Ω0 d−−−→ Ω1 d−−−→ · · · d−−−→ Ω2k−1 d+−−−→ Ω2k
+ −−−→ 0.

Therefore det(indexD1) is a trivial line bundle and the orientation of det(indexD1) is
determined by an orientation of

H0
DR(X)⊕ H1

DR(X)
∗ ⊕ · · · ⊕ H2k−1

DR (X)
∗ ⊕ H2k

DR,+(X).
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Since I = [0, 1] is contractible, the same conclusion for det(indexD0) = det(indexD)
follows. By using Assumption 3.1, we have the assertion of the lemma. ¤

5. The compactness of SMON,η

We will show the compactness of the space of all solutions of a perturbed Cliffordian
monopole equation by using the standard elliptic bootstrap technique. The argument is
the same as that in the proof of the compactness of the moduli space for the Seiberg-
Witten equation. See Kronheimer-Mrowka [19], Morgan [25].

Since the chirality operator γ and the twisted Dirac operator /∂C satisfy the relation
/∂Cγ = −γ/∂, the following diagram is commutative.

Diagram 5.1. The following diagram is commutative.

Γ (CL
−
−)

/∂C−−−→ Γ (CL
+
+)

1−γ√
2

x
x 1+γ√

2

Γ (AL)
/∂C−−−→ Γ (CL

+)

,

where AL = A⊗RAdPL =
√−1A.

Lemma 5.1. Suppose that (φ, ξ) ∈ Γ (S+
L ) ⊕ Γ (CL

−
−) is a solution of the perturbed Clif-

fordian monopole equation (5). Then we have the following formulas

(6) ∆Aφ + c(FA)φ +
κ

4
φ = −(φ⊗ φ∗)0φ + (1−√−1)ξ#ξφ + ηφ

and

(7) ∆ξ +
κ

4
ξ = (

√−1− 1)(ξ(φ⊗ φ∗)0 + (φ⊗ φ∗)0#ξ)− 2ξξ#ξ −√−1(ξη + η#ξ),

where ∆A and ∆ denote the Laplacians and κ the scalar curvature of X.

Proof. In a local frame (e1, . . . , e4k) with respect to a normal chart U of X, i.e., ∇iej =
∇ei

ej = 0 for all i, j, we write ξ =
∑

I:odd αIeI =
∑

I:type A αI(eI − γeI) ∈ Γ (CL
−
−), where

αI ∈ L2
l (X,

√−1R) for each I (, so that 〈ξ#ξφ〉 = 2|ξ|2|φ|2). By Lemma 2.10, we have

/∂S
2φ = (/∂Cξ)φ + ξ#ξφ

= −(φ⊗ φ∗)0φ−
√−1ξ#ξφ + ηφ + ξ#ξφ

= −(φ⊗ φ∗)0φ + (1−√−1)ξ#ξφ + ηφ.
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Therefore, by using the Lichnerowicz formula for the twisted Dirac operator /∂S, we have
the first assertion of the lemma. Next, we have

/∂C
2ξ = −/∂C(φ⊗ φ∗)0 −

√−1/∂C(ξ#ξ)

= −((/∂Cφ)⊗ φ∗)0 − c((φ⊗∇A
∗φ∗)0)−

√−1(/∂Cξ#)ξ −√−1c(ξ#∇ξ)

= −((/∂Cφ)⊗ φ∗)0 − c((φ⊗∇A
∗φ∗)0)−

√−1(/∂Cξ)#ξ −√−1c(ξ#∇ξ).

We denote −((/∂Cφ) ⊗ φ∗)0, −c((φ ⊗ ∇A
∗φ∗)0), −

√−1(/∂Cξ)#ξ and −√−1c(ξ#∇ξ) by
R1, R2, R3 and R4 respectively. We first compute R1. We have

R1 = −ξ(φ⊗ φ∗)0,

by using the monopole equation (5). Let SD be a subset of the set of all multi-indices

such that the set
{

eI+γeI√
2

| I ∈ SD
}

forms an orthonormal basis of CL
+
+(U). Here we

write (φ⊗∇∗φ)0 =
∑n

i=1

∑
I∈SD dxiβI

i
eI+γeI√

2
. Then we have

R2 = −
n∑

i=1

ei

∑
I∈SD

βI
i

eI + γeI√
2

= −
n∑

i=1

∑
I∈SD

βI
i

eI + γeI√
2

ei + 2
n∑

i=1

∑
i∈I,I∈SD

βI
i

eI − γeI√
2

ei

= −
n∑

i=1

∑
I∈SD

βI
i

eI + γeI√
2

ei +
n∑

i=1

∑
i∈I

βI
i

eI − γeI√
2

ei,

by the same technique as in the proof of Lemma 2.10. The first term of the right-hand
side of the above equation is equal to zero, because it is in Γ (CL

+
−) and the second term

is −(φ⊗ (/∂Sφ)∗)0# = −(φ⊗ φ∗)0#ξ. Moreover,

R3 =
√−1(φ⊗ φ∗)0#ξ − (ξ#ξ)#ξ −√−1η#ξ

=
√−1(φ⊗ φ∗)0#ξ − ξξ#ξ −√−1η#ξ.
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Furthermore

R4 = −√−1
n∑

i=1

ei

∑
I:type A

αI(eI + γeI)∇iξ

=
√−1

(
n∑

i=1

∑
I:type A

αI(eI + γeI)ei∇iξ − 2
n∑

i=1

∑
i∈I,I:type A

αI(eI − γeI)ei∇iξ

)

=
√−1

(
n∑

i=1

∑
I:type A

αI(eI + γeI)ei∇iξ −
n∑

i=1

∑
i∈I

αI(eI − γeI)ei∇iξ

)

=
√−1ξ#(/∂Cξ)−√−1ξ(/∂Cξ)

= −√−1ξ(/∂Cξ)

= −√−1ξ
(−(φ⊗ φ∗)0 −

√−1ξ#ξ + η
)

=
√−1ξ(φ⊗ φ∗)0 − ξξ#ξ −√−1ξη.

Therefore we have the second assertion of the lemma. ¤

We simply denote ⊕k
i=1Λ

4i−3T ∗X⊗R
√−1R by ΛA

L and ⊕k
i=1Ω

4i−3(X)⊗R
√−1R by ΩA

L .
Now we consider the differential operator (superconnection)∇ξ : Γ (SL

+) −→ Γ (ΛA
L⊗RSL

+)

corresponding to a Clifford section ξ ∈ Γ (CL
−
−). Let ξ′ =

(
1−γ√

2

)−1

ξ ∈ Γ (AL). Since the

map 1−γ√
2

: Γ (AL) −→ Γ (CL
−
−) is an isometric isomorphism, the section ξ′ is uniquely de-

termined by ξ. Let ρ = c−1 : Γ (CL) −→ Ω∗(X)⊗R
√−1R and α = ρ(ξ′). Then α ∈ ΩA

L .
We define ∇ξ by ∇ξ = ∇A + α. We regard the space A = ∇A + ΩA

L as the affine space of
U(1)-superconnections on SL

+. The twisted Dirac operator is related to∇ξ by the relation

(/∂S +ξ)φ = c(∇ξφ). Let ∇ΛA
L⊗S+

L
ξ the differential operator ∇ΛA

L⊗S+
L

A +α : Γ (ΛA
L⊗RSL

+) −→
Γ (ΛA

L⊗RΛA
L⊗RSL

+), where ∇ΛA
L⊗S+

L
A denote the covariant derivative on Γ (ΛA

L⊗RSL
+). The

differential operator ∇∗
ξ = ∇∗

A + α∗ : Γ (ΛA
L⊗RSL

+) −→ Γ (SL
+) is defined by

∇∗
ξ∇ξφ = −tr

(
∇ΛA

L⊗S+
L

ξ ∇ξφ
)

,

where −tr
(
∇ΛA

L⊗S+
L

ξ ∇ξφ
)

is the contraction of ∇ΛA
L⊗S+

L
ξ ∇ξφ with the Riemannian metric

g. The Laplacian ∆ξ is defined by

∆ξφ = ∇∗
ξ∇ξφ

for all φ ∈ Γ (SL
+). More precisely,

∆ξφ = ∇∗
A∇Aφ + α∗∇Aφ +∇∗(αφ) + α∗αφ.

The operator α∗ : Γ (ΛA
L⊗RSL

+) −→ Γ (SL
+) is explicitly given by α∗ψ = −tr(αψ) for all

ψ ∈ Γ (ΛA
L⊗RSL

+). Thus we have α∗αφ = 2|ξ|2φ.
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Lemma 5.2. The superconnection ∇ξ is Hermitian, that is, the identity

d|φ|2 = 〈∇ξφ, φ〉+ 〈φ,∇ξφ〉
holds for all φ ∈ Γ (SL

+).

Proof. Write ξ′ =
∑

|I|:type A αIeI , where αI ∈ C∞(X,
√−1R). Then α =

∑
|I|:type A αIρ(eI).

We have

d|φ|2 = 〈∇Aφ, φ〉+ 〈φ,∇Aφ〉
= 〈∇Aφ, φ〉 −

∑
I:type A

αI〈ρ(eI)φ, φ〉+
∑

I:type A

αI〈ρ(eI)φ, φ〉+ 〈φ,∇Aφ〉

= 〈∇Aφ, φ〉+ 〈αφ, φ〉+ 〈φ, αφ〉+ 〈φ,∇Aφ〉
= 〈(∇A + α)φ, φ〉+ 〈φ, (∇A + α)φ〉
= 〈∇ξφ, φ〉+ 〈φ,∇ξφ〉.

This completes the lemma. ¤

Lemma 5.3. (Kato’s inequality) For any φ ∈ L2
l (SL

+) and ξ ∈ L2
l (CL

−
−), the inequality

∆X |φ|2 ≤ 2Re〈∆ξφ, φ〉
holds almost everywhere on X, where ∆X denotes the scalar Laplacian on X.

Proof. By using Lemma 5.2, we have

∆X |φ|2 + 2|∇ξφ|2 = 2Re〈∆ξφ, φ〉.
Therefore we have the lemma. ¤

We simply denoted by /∂ξ the twisted Dirac operator /∂S + ξ. We consider the total
twisted Dirac operator

/DS =

(
0 /∂∗S
/∂S 0

)
:
Γ (SL

+)
⊕

Γ (SL
−)
−→

Γ (SL
+)

⊕
Γ (SL

−)
.

Here the twisted Dirac operator /∂∗S : Γ (SL
−) −→ Γ (SL

+) is the formal adjoint operator
of /∂S, that is, 〈/∂Sφ, ψ〉L2 = 〈φ, /∂∗Sψ〉L2 holds for all pair φ ∈ Γ (SL

+) and ψ ∈ Γ (SL
−).

The formal adjoint /∂∗ξ : Γ (SL
−) −→ Γ (SL

+) of /∂ξ is given by /∂∗ξ = /∂S + ξ#, because the
fact that

〈/∂ξφ, ψ〉 = 〈/∂Sφ + ξφ, ψ〉
= 〈/∂Sφ, ψ〉+ 〈ξφ, ψ〉
= 〈φ, /∂∗Sψ〉+ 〈φ, ξ#ψ〉
= 〈φ, /∂∗Sψ + ξ#ψ〉
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holds. We have

/DS
2 =

(
/∂∗S/∂S 0

0 /∂S/∂∗S

)
.

We simply denote /∂∗S/∂S : Γ (SL
+) −→ Γ (SL

+) by /∂2
S. Similarly we denote /∂∗ξ/∂ξ by /∂2

ξ .

Definition 5.1. For any (φ, ξ) ∈ Γ (SL
+)⊕ Γ (CL

−
−), we define F(φ, ξ) ∈ Γ (SL

+) by

F(φ, ξ) = /∂2
ξφ−

(
∆ξφ + c(FA)φ +

κ

4
φ + δ̂(ξ)φ

)
.

Also we can write

F(φ, ξ) = ξ#(/∂Sφ) + /∂∗S(ξφ)− α∗∇Aφ−∇∗
A(αφ).

Lemma 5.4. For any (φ, ξ) ∈ Γ (SL
+) ⊕ Γ (CL

−
−) satisfying the equation /∂Sφ = ξφ, we

have the equality

∆−ξφ−∆Aφ−F(φ, ξ) + (/∂Sξ)φ + 2|ξ|2φ + 2δ̂(ξ)φ = 0.

Proof. Since /∂2
−ξφ = 0, we have

∆−ξφ + c(FA)φ +
κ

4
+ F(φ,−ξ) + δ̂(−ξ)φ = 0.

Also by Lemma 2.10 and the Lichnerowicz formula, we have

∆Aφ + c(FA)φ +
κ

4
= (/∂Cξ)φ + ξ#ξφ.

From the above two equality, we have

0 = ∆−ξφ−∆Aφ + F(φ,−ξ) + (/∂Cξ)φ + ξ#ξφ + δ̂(−ξ)φ

= ∆−ξφ−∆Aφ−F(φ, ξ) + (/∂Cξ)φ + 2|ξ|2φ + 2δ̂(ξ)φ,

by F(φ,−ξ) = −F(φ, ξ) and δ̂(−ξ) = δ̂(ξ). ¤

Lemma 5.5. For any (φ, ξ) ∈ Γ (SL
+) ⊕ Γ (CL

−
−) satisfying the equation /∂Sφ = ξφ, we

have

F(φ, ξ) = (/∂Cξ)φ− (/∂Cξ)[0]φ + 2δ̂(ξ)φ,

where we denote (•)[0] by the Γ (1+γ
2

(C0
L ⊕ C4k

L )) component of • ∈ Γ (CL
+
+).
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Proof. Since c(∇Aφ) = 1−γ
2

c(α)φ, we have

α∗∇Aφ = −tr(α∇Aφ)

= (c(α)c(∇Aφ))[0]

=

(
1 + γ

2
c(α)

1− γ

2
c(α)

)

[0]

φ

= (ξ#ξ)[0]φ

= 2|ξ|2φ.

Furthermore we have

∇∗
A(αφ) = −tr

(
∇ΛA

L⊗SL
+

A (αφ)
)

= −tr
(
(∇ΛA

L
A α)φ + α∇Aφ

)

= (/∂Cξ)[0]φ + (ξ#ξ)[0]φ

= (/∂Cξ)[0]φ + 2|ξ|2φ.

Therefore we have

F(φ, ξ) = ξ#/∂Sφ + /∂∗S(ξφ)− α∗∇Aφ−∇∗
A(αφ)

= ξ#ξφ + /∂2
Sφ− 2|ξ|2φ− (/∂Cξ)[0]φ− 2|ξ|2φ

= 2ξ#ξφ + (/∂Cξ)φ− 4|ξ|2φ− (/∂Cξ)[0]φ

= (/∂Cξ)φ− (/∂Cξ)[0]φ + 2δ̂(ξ)φ.

¤

Lemma 5.6. For any solution (φ, ξ) of the perturbed Cliffordian monopole equation (5),
we have the equality

∆−ξφ−∆Aφ + 2(1−√−1)|ξ|2φ + ηφ = 0.

Proof. By lemmas 5.4 and 5.5, we have

∆−ξφ−∆Aφ + 2|ξ|2φ + (/∂Cξ)[0]φ.

Furthermore, by the second equation of (5), we have

(/∂Cξ)[0]φ = −2
√−1|ξ|2φ + ηφ.

Therefore we have the assertion of the lemma. ¤

The following is the key lemma for the proof of the compactness.
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Lemma 5.7. For all (φ, ξ) ∈ SMON,η, we have

|φ|2 < C1(X, L, g, h, A), |ξ|2 < C2(X, L, g, h, A, η),

where C1 and C2 are constants independent of the choice of (φ, ξ) and depending only on
the Riemannian metric g of X , the Hermitian metric h on L, the Hermitian connection
A and the perturbation η.

Proof. By Lemma 5.1 and Lemma 5.6, we have

(8) ∆−ξφ + c(FA)φ +
κ

4
φ− (1−√−1)δ̂(ξ)φ + (φ⊗ φ∗)0φ = 0.

Since X is compact, there exists a point x0 ∈ X such that |φ(x)| takes the maximum
value at x0. By Kato’s inequality, we have

Re〈∆−ξφ(x0), φ(x0)〉 ≥ 0.

Furthermore, by Lemma 2.12, we have

〈−δ̂(ξ(x0))φ(x0), φ(x0)〉 ≥ 0.

Therefore we have by (8)

Re〈c(FA(x0))φ(x0), φ(x0)〉+
κ(x0)

4
|φ(x0)|2 +

1

2
|φ(x0)|4 ≤ 0.

We define

||c(FA)|| = max
x∈X

{
max

||v||=1,v∈CL
−
−x

〈c(FA)v, v〉
}

.

and

κ0 = min
x∈X

{κ(x)} .

Then we have φ ≡ 0. Otherwise

1

2
|φ(x0)|2 ≤ max

{
0,−κ0

4
+ ||c(FA)||

}
.

Therefore there exists a constant C1 depending only on κ and FA such that

|φ|2 ≤ C1.

Furthermore, this implies that the operator norm of (φ⊗φ∗)0 and (φ⊗φ∗)0# are bounded
by some constant K1 depending on C1 and n, that is,

Re〈ξ(φ⊗ φ∗)0, ξ〉 ≤ K1|ξ|2, Re〈(φ⊗ φ∗)0#ξ, ξ〉 ≤ K1|ξ|2.
By Lemma 5.1,(7), we have

Re〈∆ξ, ξ〉+ κ

4
|ξ|2 + Re〈ξ(φ⊗ φ∗)0 + (φ⊗ φ∗)0#ξ, ξ〉+ 2〈ξξ#ξ, ξ〉+√−1〈ξη + η#ξ, ξ〉 = 0.
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There exists a point x1 ∈ X where |ξ(x)| takes the maximum value at x1. Then, by
Kato’s inequality, we have Re〈∆ξ(x1), ξ(x1)〉 ≥ 0. Moreover, by Lemma 2.13, we have
2〈ξ(x1)ξ#(x1)ξ(x1), ξ(x1)〉 ≥ 4|ξ(x1)|4. Therefore we conclude that

κ(x1)

4
|ξ(x1)|2 + 2K1|ξ(x1)|2 + 4|ξ(x1)|4 + Re(

√−1〈ξ(x1)η(x1) + η#(x1)ξ(x1), ξ(x1)〉) ≤ 0.

Here we have the following estimation

|Re(
√−1〈ξ(x1)η(x1) + η#(x1)ξ(x1), ξ(x1)〉)| ≤ 2|η(x1)||ξ(x1)|2.

We denote by η′ ∈ R the number maxx∈X{|η(x)|}. We define

C2 = max

{
0,−κ0

16
− K1

2
+

1

2
η′

}
.

Then we have

|ξ|2 ≤ C2.

This completes the lemma. ¤

By the following lemma, we complete the proof of Theorem 3.2.

Lemma 5.8. For all η ∈ Γ (CL
+
+), SMON,η is compact.

Proof. By Lemma 5.7, we can assume that (φ, ξ) is Lq-bounded for q > n. Then
D(φ, ξ) = −(Q− η)(φ, ξ) is also Lq

1-bounded. Since D is an elliptic operator, (φ, ξ) is Lq
1-

bounded. Since (1− (n/q))+(1− (n/q)) ≥ 1−(n/q), we have Lq
1×Lq

1 ⊂ Lq
1 by the Sobolev

multiplication theorem. Thus (Q−η)(φ, ξ) is also Lq
1-bounded. By induction, we conclude

(φ, ξ) is Lq
2k-bounded. Applying the Sobolev multiplication theorem and the Sobolev

embedding theorem to our case where (2k − (n/q))+(2k − (n/q)) ≥ 2k−2k, n− (n/q) ≥
2k − 2k and 2k ≥ 2k, we have Lq

2k × Lq
2k ⊂ L2

2k and Lq
2k ⊂ L2

2k. Thus we have both
(φ, ξ) and (Q− η)(φ, ξ) are L2

2k-bounded. The equation D(φ, ξ) = −(Q− η)(φ, ξ) implies
D(φ, ξ) is L2

2k-bounded. The Sobolev multiplication theorem shows L2
2k+1×L2

2k+1 ⊂ L2
2k+1,

because (2k+1−2k)+(2k+1−2k) ≥ (2k+1−2k). Thus both (Q−η)(φ, ξ) and D(φ, ξ)
are L2

2k+1-bounded. By induction, (φ, ξ) is L2
l -bounded for any l > 2k. Now we use the

compactness of the embeddings L2
l ⊂ C l−2k−1. Therefore SMON,η is compact. ¤

Remark 5. The embedding SASD,η ↪→ SMON,η is closed for each η ∈ Γ (CL
+
+). Therefore

SASD,η is compact. This completes the proof of Theorem 3.1.

Remark 6. By the proof of Lemma 5.8, we also conclude that if the line bundle L is trivial
and the scalar curvature κ is positive then SMON,η with sufficiently small perturbation η
is empty.
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Remark 7. The diffeomorphism class of SMON,η is uniquely determined and is independent
of the choice of l > 2k. Furthermore we can consider each (φ, ξ) ∈ SMON,η to be a C∞-
solution. Therefore SMON,η is compact in Γ (SL

+) ⊕ Γ (CL
−
−) with respect to the C∞-

topology.

6. Smooth invariants of a spin manifold

In this section, we consider the perturbed moduli spaceMη perturbed by a perturbation
η ∈ B ∩ Γ (CL

+
+). In Section 4, we considered a family of linear elliptic operators





(
/∂S − ξ − • φ

(• ⊗ φ∗)0ξ + (φ⊗ •∗)0ξ /∂C +
√−1•#ξ +

√−1ξ#•
)

:
L2

l (S
+
L )

⊕
L2

l (CL
−
−)
−→

L2
l−1(S

−
L )

⊕
L2

l−1(CL
+
+)





parameterized by (φ, ξ) ∈ SMON,η. Here we consider a simpler family of complex linear
elliptic operators

D =
{
/∂(φ,ξ) : Γ (SL) −→ Γ (SL)

}

instead of the above family, where we define a full twisted Dirac operator /∂(φ,ξ) by

/∂(φ,ξ) =

(
0 (/∂S − ξ)∗

/∂S − ξ 0

)
:
Γ (S+

L )
⊕

Γ (S−L )
−−−→

Γ (S+
L )

⊕
Γ (S−L )

.

Roughly speaking the index bundle indexD for the elliptic family D is formally given by

indexD =
⋃

(φ,ξ)∈SMON,η

Ker (/∂S − ξ)−
⋃

(φ,ξ)∈SMON,η

Coker (/∂S − ξ)

=
⋃

(φ,ξ)∈SMON,η

Ker (/∂S − ξ)−
⋃

(φ,ξ)∈SMON,η

Ker (/∂S − ξ)∗.

See Donaldson-Kronheimer [12],Section 5.2.1 and Atiyah-Singer [7]. The equation /∂(φ,ξ)ψ =
0 for ψ ∈ Γ (SL) is S1-invariant. Thus indexD is a virtual S1-bundle over SMON,η, i.e.,
[indexD]S1 ∈ KS1(SMON,η). On the other hand, since S1-acts freely on SMON,η, the
quotient space indexD/S1 is a virtual bundle over Mη = SMON,η/S

1, i.e., [indexD/S1] ∈
K(Mη). We simply denote indexD/S1 by index D̂. The determinant line bundle det(index D̂)
is given by

det(indexD)/S1 =

{
⋃

(φ,ξ)∈SMON,η

ΛmaxKer(/∂s − ξ)⊗C(ΛmaxCoker(/∂s − ξ))∗
}

S1
.

Then det(index D̂) is a complex line bundle over Mη. Let s ∈ Spin(X) be a given spin
structure.
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Definition 6.1. We define a rational number qs(X,L) by

qs(X, L) =

∫

Mη

ch(index D̂).

We also define an integer q′s(x, L) as follows: if dimMη is positive and even, then we set

q′s(X,L) =

∫

Mη

c1(det(index D̂))d,

where d = 1
2
dim Mη; if dimMη = 0, then we set

q′s(X,L) =

∫

Mη

1 = ]
signed

Mη,

where ]
signed

Mη means the signed number of points in Mη, which are signed by orientation

of Mη; otherwise we set q′s(X,L) = 0. Furthermore, we define two maps q : Spin(X) −→
Q and q′ : Spin(X) −→ Z by q(s) = qs(X,L) and q′(s) = q′s(X, L) respectively.

We remark that ∫

Mη

ch(index D̂) = 〈ch([index D̂]), [Mη]〉,

where the last “ch” means the Chern character homomorphism

ch : K(Mη) −−−→ H∗(Mη;Q).

Theorem 6.1. The rational number qs(X,L) is uniquely determined by the orientation
preserving diffeomorphism type of X, the isomorphism class of L, the spin structure s and
the choice of orientation of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Proof. Let g0 and g1 be two Riemannian metrics on X, and h0 and h1 two Hermitian
metrics on L. Then there exists a smooth path {gt}, t ∈ I = [0, 1] of Riemannian
metrics on X such that {gt} joins g0 to g1. Moreover there exists a smooth path {ht}
of Hermitian metrics on L such that {ht} joins h0 to h1. Then we can choose a smooth
path {At} of connections on L such that for each t ∈ I, At is a Hermitian connection
with respect to ht. We denote by St

L and Ct
L the twisted spinor bundle and the Clifford

bundle with respect to gt and ht respectively. Since St
L
∼= SL and Ct

L
∼= CL for any metrics

gt, ht (t ∈ I), we may identify all of them respectively. We denote by /∂t
S : Γ (SL) −→

Γ (SL) and /∂t
C : Γ (CL) −→ Γ (CL) the twisted Dirac operators with respect to the metrics

gt and ht. And we denote by Qt : V −→ W the quadratic map with respect to the metrics
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gt and ht. For each t ∈ I, we denote by γt the chirality operator with respect to gt.
We denote by Eqt(η) the perturbed Cliffordian monopole equation perturbed by η with
respect to the twisted Dirac operator /∂t

S, /∂t
C and the quadratic map Qt. For each t ∈ I,

we denote by Bt the Baire subset of Ht =
{
η ∈ Γ (1+γt

2
CL

+) | /∂t
Cη = 0

}
such that for each

η ∈ Bt, the space of all solution of Eqt(η) is a smooth manifold. Let η0 ∈ B0 and η1 ∈ B1.
Let

P =
{
µ ∈ L2

l (I, CL
+) | µ(0) = η0, µ(1) = η1, µ(t) ∈ Ht (t ∈ I)

}
.

We define a map

J : L2
l (S

+
L )⊕ L2

l (CL
−
−)⊕ I ⊕ P −−−→ L2

l−1(S
−
L )⊕ L2

l−1(CL
+
+)⊕ I

by
J(φ, ξ, t, µ) = ((Dt + Qt − ηt)(φ, ξ), t) ,

Let S = J−1({0} ⊕ I). We can show that S is a Banach manifold , by the same method
as in the proof of Lemma 4.1. Let π : S −→ P be the projection to the P factor. Again,
by Assumption 3.1, we can show that there exists a Baire subset C of P such that for
each µ ∈ C, the space Ŝµ = π−1(µ) is an oriented smooth compact manifold of dimension

dim Ŝµ = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

ch(L)Â(X) + 2

with boundary SMON,η1−SMON,η0 , by the same method as in the proof of Lemma 4.2. We

choose one element µ ∈ C. We simply denote Ŝµ by Ŝ. Let π′ : Ŝ −→ I be the projection

to the I factor. Let M̂ = Ŝ/S1. We have

M̂ ⊂ L2
l (S

+
+)⊕ L2

l (CL
−
−)

S1
⊕ P ⊕ I.

M̂ is oriented by the orientation of Xand the choice of orientation of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X)

and the natural orientation of I and L, by using the proof of Lemma 4.3. Then M̂ is a
smooth compact manifold of dimension dimM̂ = dim Ŝ − 1 with boundary Mη1 −Mη0 .
Therefore Mη0 and Mη1 is oriented cobordant. Furthermore we have an elliptic family

Dt =
{
/∂t,(φ,ξ) | (φ, ξ) ∈ St

}
,

where
St = Ŝ ∩ (

L2
l (S

+
L )⊕ L2

l (CL
−
−)× {t})

and

/∂t,(φ,ξ) =

(
0 (/∂t

S − ξ)∗

/∂t
S − ξ 0

)
:
Γ (S+

L )
⊕

Γ (S−L )
−→

Γ (S+
L )

⊕
Γ (S−L )

.

Then {Dt} is a homotopy of elliptic families which joins D0 to D1. Now we consider the
index bundle

index D̂t =
indexDt

S1
.
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Since the Chern character of the index bundle of any elliptic family is homotopy invariant,
therefore we have ∫

Mη0

ch(indexD0) =

∫

Mη1

ch(indexD1).

See Atiyah-Singer [7] . This completes the proof of the theorem. ¤

Corollary 6.1. The integer q′s(X, L) is uniquely determined by the orientation preserving
diffeomorphism type of X, the isomorphism class of L and the spin structure s and the
choice of orientation of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Corollary 6.2. The maps q : Spin(X) −→ Q and q′ : Spin(X) −→ Z are invariants of
spin structure preserving diffeomorphism of X and isomorphism of L.

Definition 6.2. We define an integer q′′s (X, L) as follows: if dimMη is positive and even,
then we set

q′′s (X,L) =

∫

Mη

c1(SMON,η)
d;

if dimMη = 0, then we set

q′′s (X, L) =

∫

Mη

1 = ]
signed

Mη;

otherwise we set q′′s (X, L) = 0.

Remark 8. In Definition 6.2, we denote by c1(SMON,η) the 1st Chern class c1(L
′) of the

complex line bundle L′ over Mη associated with SMON,η.

Corollary 6.3. The integer q′′s (X, L) is uniquely determined by the orientation preserving
diffeomorphism type of X, the isomorphism class of L and the spin structure s and the
choice of orientation of

H0
DR(X)⊕ H2

DR(X)⊕ · · · ⊕ H2k
DR,+(X),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Corollaries 6.1-6.3 follow from Theorem 6.1 immediately.
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Appendix 1

Our theory also goes well by the Spinc case. Here we explain the outline briefly. Let X be
a smooth connected closed Spinc 4k-manifold satisfying Assumption 3.1. Namely, there
exist a principal Spinc(4k)-bundle PSpinc over X and a principal U(1)-bundle PL over X
and a double covering map ρ of PSpinc onto FX × PL such that the diagram

PSpinc
ρ−−−→ FX × PL

π

y π

y
X X

is commutative, where π and π are the projections. We denoted by c the isomorphism
class of the pair (PSpinc , PL). An oriented manifold X has a Spinc structure if and only if
the condition w2(X) ≡ c1(PL) mod 2 is satisfied. We can identify a Spinc-structure c to a
cohomology class c1(PL) ∈ H2(X;Z) satisfying the above condition. Let L be a complex
line bundle associated with PL, i.e., PL×U(1)C ∼= L. We denote by WL the Spinc spinor

bundle associated with the Spinc structure c. Then WL is locally isomorphic to S⊗CL 1
2 .

We remark that the spinor bundle S and the square root L
1
2 always exist locally, even if

X is not spin. We define the twisted Clifford bundle CL by CL = C ⊗ AdPL =
√−1C.

The Riemannian metric g on X and the Hermitian metric h on L induce the twisted Dirac
operators /∂W : Γ (WL) −→ Γ (WL) and /∂C : Γ (CL) −→ Γ (CL) as in Section 2. Then the
Cliffordian monopole equation on the Spinc manifold (X, c) is given by{

/∂W φ = ξφ,

/∂Cξ = −(φ⊗ φ∗)0 −
√−1ξ#ξ

,

for (φ, ξ) ∈ Γ (W+
L ) ⊕ Γ (CL

−
−) in the same way as the spin case. The same results

corresponding to ones in the spin case still hold in the Spinc case.

Appendix 2

Let C = C(R4k) be the Clifford algebra on R4k and M = M+⊕M− the spinor module of
C. In this section, we will show the following two formulas:

(φ⊗ φ∗)0 =
1 + γ

26k−2

∑

I,J :odd,type A,
eIeJ=−eJeI

〈eIeJφ, φ〉eIeJ

and

〈(φ⊗ φ∗)0φ, φ〉 =
1

2
|φ|4

for φ ∈ M+, where we denote by (φ⊗φ∗)0 the purely imaginary part of φ⊗φ∗ in C+⊗RC.

Lemma A.1.

(φ⊗ φ∗)0 =
1

22k

∑
K:even, type A

〈eKφ, φ〉eK .
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Proof. The orthogonal decomposition of φ× φ∗ in C+⊗RC is given by the formula

φ⊗ φ∗ =
∑

K:even, type A

〈eK , φ⊗ φ∗〉CeK +
∑

L:even, type B

〈eL, φ⊗ φ∗〉CeL

=
1

22k

{ ∑
K:even, type A

〈eKφ, φ〉eK +
∑

L:even, type B

〈eLφ, φ〉eL

}
,

where 〈•, •〉C and 〈•, •〉 are the the metrics on C⊗RC and M+ respectively. For any even
multi-index K of type A, we have

〈eKφ, φ〉 = 〈eK
2φ, eKφ〉 = −〈φ, eKφ〉 = −〈eKφ, φ〉.

It follows that 〈eKφ, φ〉 is purely imaginary. By the same way, for any even multi-index
L of type B, we have

〈eLφ, φ〉 = 〈eL
2φ, eLφ〉 = 〈φ, eLφ〉 = 〈eLφ, φ〉.

It follows that 〈eLφ, φ〉 is purely real. Therefore the lemma is completed. ¤

Corollary A.2.

(φ⊗ φ∗)0 =
1 + γ

26k−2

∑

I,J :odd, type A
eIeJ=−eJeI

〈eIeJφ, φ〉eIeJ .

Proof. we can easily show that

(1 + γ)
∑

I,J :odd, type A

〈eIeJφ, φ〉eIeJ = 24k−2
∑

K:even

〈eKφ, φ〉eK ,

where the number 24k−2 is the multiplicity of each 〈eKφ, φ〉eK in the left sum. For any
pair of odd multi-indices I and J of type A, the product eIeJ is type A if and only if the
equality eIeJ = −eJeI follows, and the product eIeJ is type B if and only if the equality
eIeJ = eJeI follows. Therefore, by Lemma A.1, we have

(φ⊗ φ∗)0 =
1

22k

∑
K:even, type A

〈eKφ, φ〉eK

=
1 + γ

26k−2

∑

I,J :odd, type A
eIeJ=−eJeI

〈eIeJφ, φ〉eIeJ .

¤
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By Lemma A.1, we have

|φ|2 = 〈(φ⊗ φ∗)φ, φ〉

=
1

22k

{ ∑
I:even, type A

〈eIφ, φ〉〈eIφ, φ〉+
∑

J :even, type B

〈eJφ, φ〉〈eJφ, φ〉
}

=
1

22k

{ ∑
I:even, type A

|〈eIφ, φ〉|2 +
∑

J :even, type B

|〈eJφ, φ〉|2
}

.

To prove the second formula, it suffice to show the following formula:

Lemma A.3. ∑
I:even, type A

|〈eIφ, φ〉|2 =
∑

J :even, type B

|〈eJφ, φ〉|2.

Proof. We fix the usage of notation of the multi-indices as follows: we denote by I or I ′

an even multi-index of type A and denote by J or J ′ an even multi-index of type B. It
suffice to consider the case where φ 6= 0. Since

|φ|2φ = (φ⊗ φ∗)φ =
1

22k

{∑
I

〈eIφ, φ〉eIφ +
∑

J

〈eJφ, φ〉eJφ

}
,

we can decompose : ∑
I

〈eIφ, φ〉eIφ = CAφ + ψA

and ∑
J

〈eJφ, φ〉eJφ = CBφ + ψB,

where CA and CB are non-negative real numbers satisfying the relation CA+CB = 22k|φ|2,
and ψA and ψB are some vectors in M+ satisfying the relation ψA +ψB = 0 and 〈ψA, φ〉 =
〈ψB, φ〉 = 0.

We first consider the case where ψA = ψB = 0. Let A =
∑
I

〈eIφ, φ〉eIφ = CAφ and

B =
∑
J

〈eJφ, φ〉eJφ = CBφ. We have

CAA =
∑

I

〈eIφ, φ〉eI

∑

I′
〈eI′φ, φ〉eI′φ

=
∑

I,I′
〈eIφ, φ〉〈eI′φ, φ〉eIeI′φ

=
∑

I

|〈eIφ, φ〉|2φ +
∑

I 6=I′
〈eIφ, φ〉〈eI′φ, φ〉eIeI′φ.
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Then we have

C2
A|φ|2 = 〈CAA, φ〉

=
∑

I

|〈eIφ, φ〉|2|φ|2 +
∑

I 6=I′
〈eIφ, φ〉〈eI′φ, φ〉〈eIeI′φ, φ〉

= CA|φ|4 +
∑

I 6=I′
eIeI′ :type B

〈eIφ, φ〉〈eI′φ, φ〉〈eIeI′φ, φ〉.

Therefore we have

C2
A|φ|2 − CA|φ|4 =

∑

I 6=I′
eIeI′ :type B

〈eIφ, φ〉〈eI′φ, φ〉〈eIeI′φ, φ〉.

Similarly, we obtain

C2
B|φ|2 − CB|φ|4 =

∑

J 6=J ′
eJeJ′ :type B

〈eJφ, φ〉〈eJ ′φ, φ〉〈eJeJ ′φ, φ〉.

Here, since

∑

I 6=I′
eIeI′ :type B

〈eIφ, φ〉〈eI′φ, φ〉〈eIeI′φ, φ〉

=
∑

I 6=I′
eIeI′ :type B

〈φ, eIφ〉〈eI′φ, eIφ〉〈eI′φ, φ〉

=
∑

I 6=I′
eM=eIeI′ :type B

tφ(φ⊗ (eMφ)∗)2φ

=
∑

J 6=J ′
eM=eJeJ′ :type B

tφ(φ⊗ (eMφ)∗)2φ

=
∑

J 6=J ′
eJeJ′ :type B

〈φ, eJφ〉〈eJ ′φ, eJφ〉〈eJ ′φ, φ〉

=
∑

J 6=J ′
eJeJ′ :type B

〈eJφ, φ〉〈eJ ′φ, φ〉〈eIeJ ′φ, φ〉,
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it follows that

0 = C2
A|φ|2 − CA|φ|4 − CB|φ|2 + CB|φ|4

= (CB − CA)|φ|2(CA + CB − |φ|2)
= (22k − 1)|φ|4(CA − CB).

Therefore we conclude that CA = CB.
We next consider the case where ψA 6= 0. We denote by τ : M+ −→ M+ the C-linear

map uniquely determined by the condition τ(φ) = ψA, τ(ψA) = φ and τ |〈{φ,ψA}〉⊥ = 1.

Then the restriction of τ on 〈{φ, ψA}〉 is given by

τ |〈{φ,ψA}〉 =

(
0 |φ|

|ψA||ψA|
|φ| 0

)
.

The linear map τ satisfies the properties: τ 2 = 1 and 〈τs, tτt〉 = 〈s, t〉 for all s, t ∈ M+.
By definition of τ , we have

τ(
∑

I

〈eIφ, φ〉eIφ) = τ(CAφ + ψA) = CAψA + φ

and

τ(
∑

J

〈eJφ, φ〉eJφ) = τ(CBφ + ψB) = τ(CBφ− ψA) = CBψA − φ.

The other way, we have , by linearity of τ ,

τ(
∑

I

〈eIφ, φ〉eIφ) =
∑

I

〈eIφ, φ〉τ(eIφ)

and
τ(

∑
J

〈eJφ, φ〉eJφ) =
∑

J

〈eJφ, φ〉τ(eJφ).

Then we have

|φ|2 = 〈CAψ + φ, φ〉 =
∑

I

〈eIφ, φ〉〈τ(eIφ), φ〉

and

−|φ|2 = 〈CBψ − φ, φ〉 =
∑

J

〈eJφ, φ〉〈τ(eJφ), φ〉.

Therefore, we have

0 =
∑

I

〈eIφ, φ〉〈τ(eIφ), φ〉+
∑

J

〈eJφ, φ〉〈τ(eJφ), φ〉

=
∑

I

〈eIφ, φ〉〈eIφ, tτφ〉+
∑

J

〈eJφ, φ〉〈eJφ, tτφ〉

=
|φ|
|ψA|

(∑
I

〈eIφ, φ〉〈eIφ, ψA〉 −
∑

J

〈eJφ, φ〉〈eJφ, ψB〉
)

.
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Since |φ|/|ψA| 6= 0, we have

0 =
∑

I

〈eIφ, φ〉〈eIφ,
∑

I′
〈eI′φ, φ〉eI′φ− CAφ〉

−
∑

J

〈eJφ, φ〉〈eJφ,
∑

J ′
〈eJ ′φ, φ〉eJ ′φ− CBφ〉

=
∑

I,I′
〈eIφ, φ〉〈eI′φ, φ〉〈eIφ, eI′φ〉 − CA

∑
I

|〈eIφ, φ〉|2

−
∑

J,J ′
〈eJφ, φ〉〈eJ ′φ, φ〉〈eJφ, eJ ′φ〉+ CB

∑
J

|〈eJφ, φ〉|2.

Here, since we can show the following equality as in the first case

∑

I 6=I′
〈eIφ, φ〉〈eI′φ, φ〉〈eIφ, eI′φ〉 =

∑

J 6=J ′
〈eJφ, φ〉〈eJ ′φ, φ〉〈eJφ, eJ ′φ〉,

and since
∑
I

|〈eIφ, φ〉|2 = CA|φ|2 and
∑
J

|〈eJφ, φ〉|2 = CB|φ|2, we have

0 = CA|φ|4 − C2
A|φ|2 − CB|φ|4 + CB|φ|2

= (CB − CA)|φ|2(CA + CB − |φ|2)
= (22k − 1)(CB − CA)|φ|4.

Therefore we conclude that CA = CB. The lemma is completed. ¤

Remark 9. We expect that ψA = ψB = 0 in the proof of Lemma A.3, so that (φ⊗φ∗)0φ =
1
2
|φ|2φ. But we can not yet prove it. So this is a conjecture except 4-dimensional cases.

Appendix3

In this section, we consider 4-dimensional cases. Let X be a simply-connected closed
Spinc 4-manifold. Let L be a Hermitian line bundle over X and A a Hermitian connection
on L. The twisted Dirac operators /∂W and /∂C are assumed to be constructed by using
A. Let us assume w2(X) ≡ c1(L) mod 2. We think c = c1(L) of a Spinc structure on X.
The perturbed Cliffordian monopole equation for (X,L) is given by

{
/∂W φ = ξφ,

/∂Cξ = −(φ⊗ φ∗)0 − 2
√−1(1 + γ)|ξ|2 + η1,

(9)

for (φ, ξ) ∈ Γ (WL
+) ⊕ Γ (CL

−
−) , where the perturbation term η1 ∈ Γ (CL

+
+) satisfies

/∂Cη1 = 0. By the way, the perturbed Seiberg-Witten equation for (X, c) with the Coulomb
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gauge condition is given by



/∂W φ = −aφ,

d+a = −F+
A + c−1(φ⊗ φ∗)0 + ω,

d∗a = 0,

(10)

for (φ, a) ∈ Γ (WL
+) ⊕√−1Ω1(X), where ω ∈ √−1Ω2

+(X) satisfies dω = d∗ω = 0. Here

we write ξ = −1−γ√
2
c(a) ∈ Γ (CL

−
−) and η0 = −c(ω) ∈ Γ (CL

+
+). Then the equation (10) is

equivalent to the following equation:{
/∂W φ = ξφ,

/∂Cξ = c(F+
A )− (φ⊗ φ∗)0 + η0,

(11)

for (φ, ξ) ∈ Γ (WL
+)⊕ Γ (CL

−
−). We define a homotopy connecting (9) and (11) by

{
/∂W φ = ξφ,

/∂Cξ = (1− t)c(F+
A )− (φ⊗ φ∗)0 − 2

√−1t(1 + γ)|ξ|2 + η(t),
(12)

for t ∈ I = [0, 1] and (φ, ξ) ∈ Γ (WL
+) ⊕ Γ (CL

−
−) , where η(t) ∈ Γ (CL

−
−) is a smooth

homotopy connecting η0 and η1 satisfying the condition /∂Cη(t) = 0 for all t ∈ I. From
the Seiberg-Witten theory, we can detect the generic path condition for the perturbation
η(t) of (12). If b2

+(X) ≥ 2, then we can show that the space

Â =
{
(φ, ξ, t) ∈ L2

5(W
+)⊕ L2

5(CL
−
−)⊕ I | (φ, ξ, t) satisfies (12)

}

is a smooth oriented manifold with boundary of dimension

dim Ŝ = −χ(X) + sign(X)

2
+

2

(2π
√−1)2k

∫

X

e
c
2 Â(X) + 1

for any generic perturbation η(t). Furthermore we can show that the projection p : Ŝ −→ I
is surjection. Now we show the following proposition:

Proposition A.4. Ŝ is compact.

Outline of the proof. For any solution (φ, ξ, t) of (12), we have the following equalities:

∆Aφ + tc(F+
A )φ +

κ

4
φ + (φ⊗ φ∗)0φ = 0

and

∆ξ +
κ

4
ξ = (

√−1t− 1)(ξ(φ⊗ φ∗)0 + (φ⊗ φ∗)0]ξ)− 4t2(1− γ)|ξ|2ξ −√−1t(ξη + η]ξ)

as the proof of Lemma 5.1. Using these equalities, as the proofs of Lemmas 5.4-5.7, we
have the a priori bound estimations:

|φ|2 < C1(X, L, g, h, A)

and
|ξ|2 < C2(X, L, g, h, A, η(t), t).



46 KENROU ADACHI

Therefore, for all t 6= 0, we can show that Ŝt = p−1({t}) is compact by using the elliptic
bootstrap argument with respect to the equation (12) as the proof of Lemma 5.8. On the

other hand, since the space Ŝ0 is the space of all solutions of the Seiberg-Witten equation
with the Coulomb gauge condition, we know the space Ŝ0 is compact. Therefore Ŝ is
compact. ¤

By Proposition A.4 , Ŝ gives the oriented cobordism between Ŝ0 and Ŝ1. As a result of
this, we obtain the following:

Theorem A.5. Let X be a simply-connected closed spin 4-manifold with b2
+(X) ≥ 2,

and L a Hermitian line bundle over X with c = c1(L) which is equivalent to 0 modulo 2.
Then our invariant q′′s (X,L) is equal to the Seiberg-Witten invariant SW (X, c).

Remark 10. The assertion of Theorem A.5 is also valid even if X is a simply-connected
closed Spinc-manifold with b2

+(X) ≥ 2. Therefore for any simply-connected closed smooth
4-manifold X with b2

+(X) ≥ 2, and for any Spinc-structure c on X, our invariant q′′(X, c)
is equal to the Seiberg-Witten invariant SW (X, c).
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[9] N. Berline and M. Vergne, Zéros d’un champ de vecteurs et chractéristiques équivariantes, Duke
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