A CLIFFORDIAN MONOPOLE EQUATION
AND
SMOOTH INVARIANTS OF A SPIN MANIFOLD

KENROU ADACHI

ABSTRACT. We construct a non-linear elliptic partial differential equation for a given
smooth closed spin 4k-manifold (k > 1) and a Hermitian line bundle over the manifold.
The equation is an extended version of an analogue of the Seiberg-Witten equation for
a smooth closed Spin® 4-manifold. We define smooth invariants of the 4k-manifold by
using the moduli space of all solutions of the equation.

1. INTRODUCTION

Let X be a smooth oriented closed manifold with a Riemannian metric g. Let E and
F' be smooth vector bundles of finite rank over X with Hermitian metrics hg and hp
respectively. We set V = I'(F) and W = I'(F'). Let G be a compact Lie group. We
assume that V' and W be right G-modules on which G acts orthogonally. We consider a
G-equivariant non-linear elliptic operator of the form,

D+Q:V — W,

where D is a 1st order linear elliptic operator and () is a quadratic map, i.e., there exists
a bi-linear map Q: V x V. — W such that Q(v) = Q(v,v) for all v € V. The space S
of all solutions of the equation (D + Q)(v) = 0 for v € V is (D + @)~'(0). The moduli
space M of S is defined as (D +Q)~(0)/G. We would like to construct global differential
topological invariants of X by using the data of S and M, which depend only on the
isomorphism classes of F and F', and do not depend on the Riemannian metric g and the
Hermitian metrics hg, hrp. Let us consider the case where both & and M are compact.
Then we have the following family of linear elliptic operators parameterized by S,

D:{DU:D+Q(U,-):V—>W|UES}.

The index bundle of D is a virtual G-bundle over S, i.e., indexD € Kq(S). We set
index D = index D/G. Then index D is a virtual bundle over M, i.e., indexD € K(M).
We expect that the number

¢s(X, E, F) = (ch(index D), [M])

is such an invariant, where ch: K(M) — H*(M;Q) is the Chern character homomor-
phism and the suffix s is an auxiliary global geometrical structure of X, e.g. spin structure,
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which is used in order to construct an elliptic operator D + (). Furthermore, if the com-
pact Lie group G acts on S freely, then S has a principal G-bundle structure over M.
Then the number

q;/(X, E, F) = <Ch(8)7 [M]>

be expected to be such an invariant of X. On the other hand, by using the method of
“finite dimensional approximation of the map D + @Q” developed by Furuta [14],[15], we
may construct such an invariant as a stable homotopy class of maps,

¢s(X,E, F) € [S(V),S(W)]°,
where

0«(X, B.F) = m(Dy+ Q). [S(V), SW)¢ = lim [S(V3), S(W)|«

and
Dy+Qx: Vy —— W,

is a finite dimensional approximation of (D + Q): V. — W and S(V)) and S(W)) are
spheres in V) and W), respectively.

Our problem is how to construct an instance of the above model D + Q:V — W
such that § and M are compact for a manifold X in some suitable category with an
auxiliary global geometrical structure. We already have an example, the Seiberg-Witten
equation reformulated by Furuta [14]. In Furuta’s theory, X is a closed spin 4-manifold
and V = (Q'@gy/—1R) @ I'(St®cL) and W = ((Q° & Q,)®@rv—1R) & I'(S~®cL),
where 2" is the space of differential forms on X and €2, is the space of self-dual 2-forms
and S = ST @& S~ is the complex spinor bundle for the spin structure and L is a trivial
Hermitian line bundle over X. The linear elliptic operator D is given by

_(dt+d 0
D‘( 0 @)’

where dt + d* is equivalent to the AHS complex

d dat

0 QO Q! 02 —— 0

and @ is the half of a twisted Dirac operator. The quadratic map @ is given by

@(5) = (o)

where ¢: 9 — C(X) is the quantization isomorphism to the Clifford bundle and c¢(a)¢
means the Clifford multiplication and ¢v/—1¢ means the multiplication in the quaternions
H which is considered as the Cliffordian multiplication. In this theory, the auxiliary
geometrical structure s is a spin structure on X and the compact Lie group is Pin(2) =
(S, 7) € H*. The Seiberg-Witten equation is given by the Pin(2)-equivariant non-linear
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elliptic operator (D + Q): V. — W. The moduli space M = (D + Q)~'(0)/S! is a
smooth oriented closed manifold. The Seiberg-Witten invariant is given by

(X, L) = /M (S

where d = %dim/\/l. Let us denote by Spin(X) the space of spin structures on X. The
map

’

Spin(X,L) —L— 1z
S — ¢ (X, L)

is an invariant of orientation preserving diffeomorphisms of X. The stable homotopy
version of the Seiberg-Witten invariant defined by Furuta is given by

Y

. . Pin(2)
6s(X) = lim [Dy + Q] € lim | S(H™* @ RY), S(H" & ]R”y)]
A Y

where kEgs @ [H is the intersection form of X and R is the non-trivial real 1-dimensional
Pin(2)-module.

We construct our theory as an analogue of Furuta’s theory. Let X be a connected
closed oriented spin manifold of dimension n = 4k (k > 1) with a Riemannian metric
g. Let L be a Hermitian line bundle over X with a Hermitian metric h and let P, be a
principal U(1) = S'-bundle over X such that Ppxy)C = L. The real Clifford bundle
C(X)=C"(X)® C (X) is a Zy-grading (super) vector bundle over X and the complex
spinor bundle S = S* @ S~ for a given spin structure of X is a Zy-grading C'(X)-module.
We denote by v the chirality operator. We set C(X) = HET”C(X). The spaces 22C(X)
are the £1-eigen spaces of C'(X) for the chirality operator v respectively. We have the
decomposition of C'(X):

CX)=CifX)eCHX)a CL(X)® CZ(X).
We can consider the quarter of a twisted Dirac operator
Po: I'(CZ(X)®@rAdPL) —— I'(CL(X)®@rAdPL),
which is equivalent to the extended AHS-complex

d d d dat

0 Q0 o Q21 Q2% 0:

where Qi’“ is the space of self-dual 2k-forms. We construct our equation using the operator
@c instead of the operator d* + d* in the Seiberg-Witten equation. We denote by s the
spin structure of X. We define the Cliffordian monopole equation D + Q: V — W for
X, L, and s as follows: Let V = I'(ST®cL) ® I'(CZ®@rAdPL) and W = I'(S™®cL) ®
I (CI@RAdPL), where Pp, is the principal U(1)-bundle associated with L. The operator
D:V — W in our theory is defined by

D= (‘%S @OC) :
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where @g: I'(ST®cL) — I'(S~™®cL) is the half of twisted Dirac operator. The quadratic

map () is defined by
o osritirug
£ (¢ ® ¢*)o+ V=148

where ¢ € I'(ST®cL), £ € I'(CZ®rAdPL), {4 € I'(CL®rAdPL) and (¢ ® ¢*)y €
I'(CT®rAdPr) means the purely imaginary part of ¢®¢* € I'(CT®gC). The #-operator
is defined in Section 2. Here we call our equation “(D+Q)(¢, &) = 0” the Cliffordian mono-
pole equation for the pair (X, L). The operator D + @ is S'-equivariant. The perturbed
Cliffordian monopole equation perturbed by n € I'(C{®rAdPyL) satisfying @on = 0 is

defined by
(1) @S¢ = €¢:
Pos = —(p® ¢")o — V—1E4E + 1)

for (¢,€) € I'(ST®@cL) @ I'(CZ@rAdPL). We denote by Syon,, the space of all solutions
of the perturbed Cliffordian monopole equation (1). We assume that H},5(X) = 0 for
odd i and 1+b%+- -+ b1+ 12% > 1, where b’ = dim Hjz(X) and b2 = dim H%kR7+, the
dimension of the space of self-dual harmonic 2k-forms. Our main result is the following:

Theorem 1.1. For a generic perturbation n # 0, the space Syony, 15 a smooth oriented
compact manifold of dimension

X(X) *;iQ”(X) +2(ch(L)A(X), X) +1,

if Smon,y, exists. Furthermore, there is a one to one correspondence between the orienta-
tions of Syon, and the orientations of

H), R (X) @ Hpp(X) @ -+ @ Hpyp (X)),

where HszR,+<X) is the space of real harmonic self-dual 2k-forms.

dim SMON,n = —

Theorem 1.1 follows from Theorem 3.2 , Corollary 3.2 and Lemma 4.3. Then we can
define the smooth invariants ¢s(X, L), ¢4(X, L), ¢?(X, L) and the stable version invariant
¢s(X, L) of the pair (X, L) by using the moduli space Myon,, = Swon,,/S* and the
non-linear Dirac operator D + Q).

Theorem 1.2. Our integral invariants ¢,(X, L), ¢ (X, L) and rational invariant q;(X, L)
do not depend on the choice of Riemannian metric g on X, the choice of Hermitian metric
h on L and the choice of generic perturbation n.

Theorem 1.2 follows from Theorem 6.1 and Corollary 6.1.
The organization of this paper is the following. In Section 2, we give some preparations
for our theory. We treat Clifford bundles, spinor bundles, Dirac operators, e.t.c.. In
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Section 3, we define a perturbed Cliffordian monopole equation on a closed spin 4k-
manifold. In Section 4, we show that the space S of all solutions of a perturbed Cliffordian
monopole equation has a structure of oriented finite dimensional manifold. In Section 5,
we prove the compactness of S. In Section 6, we define three invariants of X by using
the index bundle of an elliptic family parameterized by the moduli space M = §/G and
the principal G-bundle structure of S over M. In Section 7, we give some results for the
existence problem of solutions of Cliffordian monopole equations.

2. CLIFFORD BUNDLES, SPIN STRUCTURES AND DIRAC OPERATORS

Let (e1,...,e,) be an orthonormal basis of R™ with respect to the standard met-
ric on R". The (real) Clifford algebra C(R") of R" is given by C(R™) = T(R")/Z,
where T(R") = 6790@"]1%" is the tensor algebra and 7 is its two-sided ideal defined by
T = ({eiej + eje; + 26;;}). The Clifford algebra C(R") is a Z-graded vector space
CO'(R") ® CHR™) @ - - - ® C™(R™), where C*(R") is the vector subspace of C(R") spanned
by {ej, €, | 1 <+ <ji}. Weset CHR") = @DC%(R”) and C~(R") = @10%_1(1[%").
The Clifford algebra C'(R™) has a Zsy-grading (super) algebra structure,

CR") =CT(R") & C™ (R"),
c*t.c*cot, c*.ctcce.
For a finite ordered sequence I = (i, ...,17;) of distinct suffices 7y,...,4; € {1,...,n},

we use a short-hand notation e; = e;, ---e;;, L(I) = j. Here, note that for I = 0,

we set ep = 1 and L(0) = 0. We have a decomposition, C/(R") = & R(e;). Now,
L(I)=i

n+1

we assume that n = 4k for k € Z-,. The chirality element v = (\/—1>{T]61 ey, =
(V—1)%e; - - ey, is of C(R") satisfies 42 = 1.

Remark 1. Since the chirality element 7 is independent of a choice of orthonormal basis
of R* . the Z-grading structure of the C'(R*) is preserved under any special orthonormal
transformation of R*.

Definition 2.1. Let ¢; be a base element of C'(R"). We call e; of type A if e, = —1.
We call e of type B if /2 = 1.

Proposition 2.1. A base e; of C(R™) is of type A (or B ) if and only if T'(I) := Zf:(é)l
is odd ( or even). Moreover, when L([) is odd, e; is of type A (or B ) if and only if
eryer =« (or —v ). Furthermore, when L([) is even, e; is of type A (or B ) if and only

if e;yer = —v (or 7).

The proof of Proposition 2.1 is omitted, because it is a simple calculation. We have the
following table by using Proposition 2.1.
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L(D) 0[1]2[34 -3 | dk—2 | 4k—1 ik

L) (2k—1) | (2k—1) 2k 2k
Table 2.1. | T(I)=> 2,110 |1]3]6 |10 (4 —3) | x(4k — 1) | x(4k — 1) | x (4k + 1)

Type B|A|A | B| B A A B B

Next we consider useful vector subspaces of C'~(R").

Definition 2.2. We set

k k

AR") =D CYHRY), BR") =) CYTIR").

j=1 j=1

Table 2.1 shows that A(R") is spanned by the basis of type A and B(R") is spanned by
the basis of type B. For the chirality element v, we have

Proposition 2.2.

AR") = B(R"), C (R")=AR")® B(R").
il
Definition 2.3. We set
n 1+ n n 1— n
C4(R") = —LCRY), C-(R") = —1CR").

The Clifford algebra has a decomposition:
C(R™") = C{(R™) @ CH(R") & C; (R™) & CZ(R™).

Then C(R™) satisfies the following property:

Proposition 2.3. The Clifford algebra C(R"™) satisfies the following property:

ct-ctcof, cr-cf={o}, Ct-c;ccy, C¢r-cp={0},
ci-ct={0}, Cct.-ctcct, ci-cZ={0}, Ct-CczccCz,
c-.Cctccz, C.-Cf=/{0}, c-.crcct, Ccr-Cp={0},
Cc-.-ct={0}, C;-CfccCy, C--C-={0}, C;-C-ccCt.
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Proof. Let a,b € C. Wewrite a =3, . yo/“ZLand b=}, ., B2 Then

we have

ab — Z ajef —Yer Z 6J€J —eJ
I:type A \/5 J:type A \/5

ereg — yejey — eyyey + yeyye
Z a[ﬁ]IJ vere 21’7J Yervyes

I,J:type A
=0.

Here we have used the fact that if L(I) is odd then e;y = —ve;. Therefore we conclude
that C~ - CZ = {0}. We can show the rest of the cases by the same method as the above
computation. [

Definition 2.4. The linear map # of CL(R") to CZ(R") is defined by

rerEaery e ¥ er
#<ZO‘ \/§>_ZO‘ V2

I:type A I:type A

for each 7, o ‘ﬁ% € CL(R™). We denote #(a) by azx. We also use the formal
notation

_ 1,7€1€5 F€1€y
b= > B — 5

1,J:0dd, type A

+
for b= 3"/ Jiodd, type A ﬁI’J% € CL(R").

Lemma 2.1. For any a € CL(R™) and b € CL(R"), we have the formula:

(ab)y = ayby.

Proof. We prove the formula only in case a € CZ,b € C_. In the other cases, we can
prove them similarly. We write a = 37, o' 2 and b= 37, .57 eﬂ’% Then
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we have
er —er ey + ey
W= X g 2 ﬁjT)
I:type A I:type A #
ereg — yere eryey — yeyye
= Z ol 37 ¢ ’YIJ+21’YJ ’YI’YJ)
I1,J:type A 4
= Z alﬁj(efeJ—7€I€J)>
I,J:type A #
= Z CkIﬁJ(e]GJ + 76[6]),
1,J:type A
and
er +yer ey — ey
be= T O S e
I:type A I'type A
erey + yerey —eryey — yerye
_ ZaIﬁJIJ WIJQI’VJ Verves
1,J:type A
= Z ol B (eres + verey).
1,J:type A
Therefore we have the lemma. O

Definition 2.5. For each a € CZ(R"™), we define S(a) € CT(R™) as follows: We write
= e n 2. Then 6(a) is given by

d(a) = Z ala’(ere; + verey).
I#J:type A
erej=ejer

Lemma 2.2. For any a € CZ(R™), we have the following formulas:

aga=—(1+7)[af? +b(a), aay = —(1—7)la]* +b(a)y

; — Ter—er
Proof. We write a =/, . a @ - Then we have

er +er €J—7€J
o= ) o= >, a

I:type A J:type A

I.J
E a o’ (erey +yerey).
I1,J:type A
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Since e? = —1 for each I of type A, we have
aya = Z ool (erey — verer) + Z oo’ (ere; — verey)
I(=J):type A I#£J:type A
= Z olal(erey — verer) + Z ol a’(ere; — verey)
I(=J):type A I#£J:type A
erej=ejer
= > (a')(=1—=9)+(a)
I:type A
= —(1+7)|a]* + d(a).
In similar way, we have the second formula. 0

Remark 2. Since ejejere; = erejeyer = (—1)2 = 1, we conclude that 5(@) is of type B.
Therefore 6(a) € ®F—y C¥(R™).

Remark 3. On R*, A(R?) is spanned by {e1, €2, €3, €4} such that e;e; = —eje;. Thus we
have 6(a) = 0 for any a € C~(R*). Therefore we have axa = —(1 +7)|al’.

Corollary 2.1. For any a € CZ(R")®gv—1R, we have the following formulas:
aga = (L+)|af* +6(a), aay = (1=l +6(a)y.

Lemma 2.3. For any a,b € CZ(R")®@rvV—1R, the inner product {(a,b) is equal to the
coefficient of 1 + vy of aybd.

; _ Ier—er — Jesj—yey
Proof. We write a =3, o and b=, .0 #*. Then

72
(aby= > ol =- Y op.
I:type A I:type A

In another way,

er +er J€J — e
axb = aI— -~ <
be Xt g

I:type A J:type A

= Z o' 37 (eres + verey)

I1,J:type A

—_— Z O{Iﬁl<1+7)+ Z alﬁ‘](e]ej—i-ve]ej).

I:type A I#J:type A
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Therefore we conclude the assertion of the lemma. O

Lemma 2.4. For a € CZ(R")®rv—1R, the inequality
0 < (ad(a), a) < 4al*
holds.

Proof. We write a = Ltype A al % For simplicity, we denote the coefficient of 1+~
of any b € CT®@gry/—1R by [b]. Since

aaga = (1 —7)|a|*a + ad(a) = (1 —7)|a|’a + 5(&)#a,

we have by Lemma 2.3

(ad(a), a) = <_5(a)#a7 a)

Hence we compute 6(a)d(a). Indeed,

~

6(a)d(a) = Z a'o’(eres +yeres) Z oo (exer +veLex)

I#J:type A K+#L:type A
erej=ejer eKer=€eregK
=2 E ola’a®a*(eresexer + yeresexer).
I#J,K#L:type A
erej=ejer

EKE€L=€LEK

Thus we have

[5(&)5(&)] =2 E ola’ala’ (erejeres + vereserey)
I#J:type A
Erejg=ejeyr

+2 E ol a’a’al (eree e + vereseser)
I#J:type A
erej=ejer

—4 3 (@)
I#J:type A
ereyj=ejer
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On the other hand, the inner product (aaxa,a) = 2|al’ + (6(a)4a, a) is re-computed as
follows:

) = <\/§ Z ofa’a (ereje — vereser), Z ol L 76L>

1,J,K:type A L:type A \/§
o S e s el
I=J,K:type A L:type A
_2< Z ( J) €1 — ¢ 761 Z €L—7€L>
J=K,I:type A \/_ L:type A
ey — 7€J €L — VBL
o ¥ e, 5 e
<K:I,J:type A L:type A
+4\/§< Z (a 61—’761 Z €L_7€L>
I(=J=K):type A L:type A
I J K LerL — €L
+\/§< Z a o’ o (ereje — yeregek), Z « T>
I#J,J#K,K#I:type A L:type A 2
=6lal' =4 > (af)*
I:type A
I J K LEeL — YeL
+\/§< Z aa’at (ejeje — yerejek), Z o T>
I#J,J#K,K#I:type A L:type A 2
P —4{ S @ Y @ —z<o/>2<o/>2}
I:type A J:type A I#J
I J K LéL — €L
—|—\/§< Z a‘a’a (ejeje — verejek), Z o T>
I1#J,J#K,K#I:type A L:type A 2
=6la|' —4la*+4 > (o) ()
I#J:type A
I_J_ K L€L —YEeL
+\/§< Z aa’at (ereje — yerejek), Z o T>
I1#£J,J#K,K#1I:type A L:type A 2
=2la'+4 > (o) (a’)
I#J:type A

+\/§< Z oo’ (ereser — vereser), Z &Lw>.

I1#J,J#£K,K#I:type A L:type A \/§
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Therefore we have

(0(a)ya,a) =4 Y (a')*(a”)?

I#J:type A

erej=ejer
_ N2 JN2
=4 Y ()(a”)

I#J:type A

er — ver
—\/§< E oo’ (eresex — vereser), E &LT>.
1#J,J#K,K#I:type A L:type A

Therefore we conclude that R
0 < (4(a) ya, a) < 4a|".

O
Corollary 2.2. For any a € CZ(R")®gv—1R, we have
2lal* < (aaya, a) < 6lal*.

Proof. This corollary immediately follows from Lemma 2.4. O

Let X be a smooth closed oriented manifold of dimension n = 4k with a Riemannian
metric g. We denote by F'x the orthonormal frame bundle of TX. F is a principal
SO(n)-bundle. A special orthogonal transformation of R" induces an automorphism of
C(R™) preserving the norm. Thus we have a representation cl: SO(n) — Aut(C(R")).

Definition 2.6. The Clifford bundle C(X) over X is defined by
C(X) = FxxqC(R").

Furthermore, two sub-vector bundles A(X) and B(X) of C(X) are defined by
A(X) = Fxx4AR"),
B(X) = FxxqB(R").

We simply write C' = C(X), A = A(X) and B = B(X). The Clifford bundle has natural
Zo-graded algebra structure,

C(X)=C"X)® C (X),
where both C*(X) and C~(X) are C*(X)-modules and C*-C* c ¢+, C*.CF c C~.
C~(X) decomposes into

C™(X) =A(X) @ B(X)

as a vector bundle. We denote by C*(R") the set of all units in C'(R™). We recall that
Pin(n) = {v € R | |v] = 1}) € C*(R") and Spin(n) = Pin(n) N CT(R™).
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Definition 2.7. A smooth oriented manifold X is called a spin manifold if there exists
a principal Spin(n)-bundle Pspin(ny over X and a double covering map p of Psyinen) to Fx
such that the diagram

PSpin(n) # FX
X __— X

is commutative, where 7 and 7 are the projections to X. The isomorphism class of Pspinn)
is called a spin structure on X.

X is spin if and only if wy(X) = 0. For n > 3, Spin(n) is a universal double covering
of SO(n). The space Spin(X) of all spin structures on X has an affine space structure
Spin(X) = s+H'(X; Zy) where s € Spin(X). The complex spin representation of Spin(n)
is an irreducible (Zy-grading) unitary representation

A: Spin(n) —— GL(M;C),

where

AV ™ =8k k=1,2,...
) E*Y n=8k+4, k=0,1,...]

because the maximal commuting subalgebra K, for real representations of C(R™) is
Cifn =0 (mod 8), H if n = 4 (mod 8) (,see Atiyah-Bott-Shapiro [2] and Lawson-
Michelsohn [20]). If n is even, then the Spin(n)-module M has the Zj-grading C(R™)-
module structure:

cCt-M*cMt, Ct-MTcM.

In particular, if n = 4k, then M¥ is the +1-eigenspace of the chirality operator 7. There-
fore M has the following property

ch-Mtc M, O Mt ={0}, Ct-M*t={0}, C--M"c M
ct-M-={0}, C;-M cCcM™, Ct-M~cM~, C--M ={0}.

Lemma 2.5. Fora € CZ(R")®rvV—1R and s € M™*, we have

(agas,s) . = (as,as) .
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Ter—er

N Then we have

Proof. We write a =}, . @

(a#as,s>M+:< Z alaJ(eleJ+'yeIeJ)s,s>
M+

1,J:type A

=2 E alal(ereys, s) i+
I1,J:type A

= -2 E alal(eys, ers),, -
I,J:type A

=2 g olallers, ers),, -
1,J:type A

:2< Z aJer, Z O{IGIS>
M-

J:type A I:type A

J€1 —V€Es 161 — Y€1
= o ——=s, o' ————5
< YDIREECI T >

J:itype A I:type A
= (as,as),,-.

Lemma 2.6. Fora € CZ(R")®rv—1R and s € M™*, we have

(8(a)s, s)yp+ = las|* —2al*|s[.

Proof. By Lemma 2.5, we have
2
las|” = (as, as),,-
= (axas, )+
= 2af*[s|” + (8(a)s, ) py+-
OJ

Corollary 2.3. Fora € CZ(R")®@rv—1R and s € M, we have the following inequality:

—2la’|s|* < (8(a)s, )5 < 0.
Proof. Since 0 < |as|® < 2|al?|s|*, we conclude the assertion of the corollary. O

Corollary 2.4. Fora € CZ(R")®grv/—1R and s € M, we have the following inequality:
0 < (agas, s) s < 2lasf
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Proof. This corollary immediately follows from the above corollary. 0

Definition 2.8. When X has a spin structure, we define the (complex) spinor bundle by
S = PSpin(n) XAM.

There are well-known facts;
C(X) = Pspinn) xadC(R™),  End(S) = C(X)®rC.
The spinor bundle S has a Zs-grading C'(X)-module structure,
S=8t®S8",
where ST, S~ are C(X)-module such that
ct.5*cst, Cc*.SFcs.

From now on, we assume that X is a closed spin manifold of dimension n = 4k.

Definition 2.9. The chirality operator v is given by the local expression:
N = (\/—_1)[7%1]6162 e,
= (\/ —1)%6162 ©r o Cqk—1€4k,

where (ey,...,e4) is a local frame of C!' = TX. The chirality operator 7 is independent
of the choice of a local frame of TX. v € I'(C*(X)) C I'(C(X)).

In general, v € I'(C(X)®rC) holds. The chirality operator induces an isomorphism of
C(X) satisfying v2 = 1. We write the +1-eigen spaces of v by

CL(X) = HETVC(X).

We have an orthogonal decomposition of C'(X) as a vector bundle:
C(X)=Ci{(X)aCH(X)® Cy(X)® C(X).
We can regard the halves of the spinor bundle S* as the +1-eigen space of v respectively
(,see Berline-Getzler-Vergne [8]). Therefore the spinor bundle S(X) has the following
property:
Cci-Stcst, Cp-St={0}, ct.st={0}, C--StcsS
ct.s—={0}, C;-5 cst, ct.s~cS, C--5 ={0}.
A C(X)-module bundle & is a Zy-grading vector bundle over X such that £ =T @ E

where £ are C*(X)-modules and C* - £+ C £, C* - EF C £~. We can consider the

Cliffordian multiplication
re)yxrE) —— 1)

£ x s s £s
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Definition 2.10. Let V be a connection on a C(X)-module £ compatible with metric
on &. The Dirac operator @y for V is defined as the composition of maps:

do: I(E) —— NTHX)RE) —— I(E)
where T*X = CY(X) C C(X) and I'(T*X ® &) — I'(€) is the Clifford multiplication.

The Dirac operator @y is a 1st order linear elliptic operator on I'(£). @v has an odd
parity with respect to Zs-grading on £. The Clifford bundle C' and the spinor bundle S are
both C(X)-modules over X. The Levi-Civita connection Vx on TX with respect to the
Riemannian metric g induces connections on C' and S. We denote by @5 and @d¢ the Dirac
operators on I'(S) and I'(C') for the connections induced by Vx on C' and S respectively.
In particular, we can consider the half of the Dirac operator @s: I'(ST) — I'(S™) and
the quarter of the Dirac operator @c: I'(CZ) — I'(CY), because the Dirac operator
@dc and the chirality operator v anti-commute to each other , i.e., dcy = —7y@c. These
are also 1-st order linear elliptic operators. Let E be a vector bundle over X. Then we
can consider the extensions of the Dirac operators, @ds: I'(S ® E) — ['(S ® E) and
do: I'(C ® AdPg) — I'(C ® AdPg) with respect to a connection on E compatible with
a Hermitian metric on F, where Pg is principal SO(r)-bundle associated with E and
r =rankF. We call them the twisted Dirac operators.

We now study the quarter of the Dirac operator @c: I'(CZ) — I'(CT). We call the
isomorphism as vector bundles

o: O(X) — ANT*X
the symbol map. Let ¢ = 0~'. We call ¢ the quantization map. The Hodge’s *-operator
on A*T*X induces a linear isomorphism *: Q*(X) — Q*(X) satisfying ** = 1. Let
=
2

be the +1-eigen spaces of * respectively. Let QT (resp. ©7) be the space of even (resp.
odd) differential forms. Then Q* has a decomposition

=000 60

The symbol map o induces the isomorphisms Qf = I'(Cf), where o, 3 € {£}. Let
d: Q* — Q* be the exterior derivative and d* the formal adjoint operator of d.

Q*

n

Lemma 2.7. (Gauss-Bonnet-Chern)  The operator (d + d*): QT — Q7 is a Ist
order elliptic operator and

1

indesy (d+ ') = oo /X PF(=R) = y(X).

Here R is the Riemannian curvature form of Vx, Pf(—R) = det%(—R) = Jserepin €XP(—R)
and x(X) is the Fuler number of X.
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On the other hand

Lemma 2.8. (Hirzebruch) The operator (d + d*): Q. — Q_ is a 1st order elliptic
operator and

1
e (4 +') = e | 100 = sign(X),
Here L(X) = det? (%) and sign(X) is the signature of X.

The following diagram
reoy 2o e

al Ja
of 4T o

is commutative, since @cy = —y@dc. Therefore we have

Lemma 2.9. The quarter of the Dirac operator Jc: I'(CZ) — I'(CT) has
1 koyk
s | (PHR)+ ()24 LX)
 X(X) + sign(X)
5 :

indexg do = —

See Atiyah-Hitchin-Singer [4] and Atiyah-Savilian [5] in 4-dimensional case. For the index
problem, the operator (d 4+ d*): QF — QT is equivalent to the extended AHS-complex

d d d dat

0 Q0 o Q21 Q2% 0:

where d* = p, od and p,: Q% — Qik is the projection.

In the rest of this section, we explain the relation between the # operator and the Dirac
operator @. For any section £ € I'(CZ), {4 € I'(C7) globally exists. Also we can consider
the products £4¢ € I'(CY) and €€y € I'(CZ) as global sections.

Lemma 2.10. For a pair (¢,§) € I'(ST) & I'(CZ) satisfying the relation Jdsp = £p, we
have the following formula:

Fs*p = (§c&)o + 4.

Proof. We choose a normal coordinate (U, {z1,z2,...,2,}) around a point x € X. We
assume that (e; = c(dz'), es = c¢(dz?), ... e, = c(dz™)) is an orthonormal basis on U which



18 KENROU ADACHI

satisfies the condition V,e; = 0 for all i,j € {1,2,...,n}. We can write £ = >, ., er.

Then of = —a” for e; = ve;. We have
D5’ = Ps(&e)
= (Pcf)¢ + c(§V)
= (Pc&)o + Z € Z a'e/Vip
i=1  Iodd

= (Pc)d — Z Z alere;Vip+ 2 Z Z alere; Vo

i=1 I:odd =1 i€l

= (Pc&)p—E@sd) +2) Y alereVio.

=1 4€l

Since C~S* = {0}, we have {(Ps¢) = 0. Since >/ | >, ;alere;V;p € I'(ST), we have

i Z Oélelein‘¢ =7 i Z Oélejeivi(ﬁ

=1 el i=1 i€l

= Z Z ol (ver)e; V.

i=1 €l

Therefore we have

2 Z Z alere;Vip = Z Z ol (er +ver)e;Vig.

i=1 el i=1 iel

Since for a fixed index i € {1,2,...,n}, we can write
> al(er+ver) =&y,
i€l

we have
2> ) alereVip = E4(Ps9)
i=1 iel
= 480

Therefore we have the lemma.

O

Remark 4. If X is 4-dimensional, then, by Remark 3, Lemma 2.10 implies that @52¢ =

(D)o — 2/¢|%¢.
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Lemma 2.11. For any £ € I'(CL), we have the local formula:
D&y = (Jcb)4-

(Note that this formula essencially is a formal expression, because §: Cf — C’; do not
globally exist. See Definition 2.4)

Proof. This lemma is easily obtained by direct calculations. 0

Lemma 2.12. For any ¢ € I'(ST®xC) and ¢ € I'(C~Z®rv—1R), we obtain
(€480, 0) grgne = 2L [0 + (5(€)D, B st s

and

—20¢P16* < (0(8)$, 0) g+ gy < 0-

Proof. This lemma immediately follows from Corollaries 2.3 and 2.4. O

Lemma 2.13. For any £ € I'(CZ®rv—1R), we have the following inequality:
20¢]" < (ggut, &) < 6lel".

Proof. This lemma immediately follows from Corollary 2.2. 0

3. A CLIFFORDIAN MONOPOLE EQUATION ON A SPIN 4k-MANIFOLD

Let X be a smooth connected closed spin manifold of dimension n = 4k with a Rie-
mannian metric g. Let us assume that X is connected. Let L be a complex line bundle
over X with a Hermitian metric h. Let Pp be a principal U(1)-bundle over X such that
L = Prxyw)C and AdP, = Prxaqu(l). We have that AdP, = X x vV—1R. Let A
be a connection on L compatible with the metric h. We only treat the (twisted) Dirac
operators @5 and @ for the Levi-Civita connection on X with respect to g and Hermitian
connection A with respect to h. We assume the following for the technical reason of the
compactness of the solutions.

Assumption 3.1. H),(X) =0 for odd i and 1 +b*+ -+ +b*~1 + b2 > 1.

We remark that the set of all 4k-manifolds satisfying the assumption is closed with respect
to the operations x (direct product) and f (connected sum). We use the following short-
hand notation:

Cp = CorAdP, = V~-1C,
SL - S@@L
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Definition 3.1. For £ € I'(C”) , the Cliffordian ASD-equation is given by

Dot = —V/—1€4¢,

where @c: I'(C,Z) — I'(CT) is the quarter of the twisted Dirac operator.

We define Dy = @o: I'(C,2) — ['(CLT). We define Q,: I'(CZ) — I'(CL2) by
Q1(§) = V—1&4¢.
Then we can write the Cliffordian ASD equation as
D1 -+ Ql: F(CL:) E— F(CLi)

For a non-negative integer [, the Sobolev space L?(F') for a Hermitian vector bundle F
over X is the Banach completion of the space I'(F) of all sections of F' with respect to

the L%—norm
l
i 2
Il = | 219821 dwol
=0

for each f € I'(F), where V is a unitary connection on F' and Vg) =Vpo---0Vp
(i-times).
We denote by H the space {n € LY(Cr1) | §cn = 0}.

Definition 3.2. Fix an integer [ > 2k. The perturbed Cliffordian ASD-equation param-
eterized by n € H is defined by

(2) Do = —V/=164€ +1,
for £ € L}(CD), where §c: LF(CL,Z) — LI (CLT).

Definition 3.3. We define the space Sasp,, by
Saspy = (D1 + Q1 — 1) (0).

In particular, we define

Sasp = Sasp.o = (D1 + Q1) (0).

Theorem 3.1. If Sysp,, exists, then Saspy, s a smooth oriented compact manifold of
X(X) + sign(X)
2
for a generic perturbation n € H satisfying n # 0. Also Sasp is compact.

diIIlSASD777 = — -+ 1

Corollary 3.1. Sasp, =0 for a generic perturbation n € H satisfying n # 0.
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Proof. The virtual dimension of Sxgp, is
~ X(X) + sign(X)

2
by Assumption 3.1. OJ

+1=—0"+b+--+0¥F)+1<0,

The proof of Theorem 3.1 is given in Sections 4-5.

Definition 3.4. For (¢,&) € I'(S}) @ I'(C1~), the Cliffordian monopole equation is
defined by

. {M = &,

Pos = —(p @ ¢*)o — V1648
where (¢ ® ¢*)g is the purely imaginary part of ¢ ® ¢*, i.e.,

1
(¢ ®¢")o = % > leresd d)erey.

I,J:0dd,type A,
erej=—ejer

We have ((¢ ® ¢*)oo, @) = %|gb[4. See Appendix 2.

Let V=(S))@CLZ)and W = I['(S; )@ '(CLT). Let D = <%S @OC
The quadratic map @Q: V — W is defined by

N @ - (<¢ ® d)*)o_-gf\/—_lf#f) |

Then we can write the Cliffordian monopole equation as
(4) D+Q:V —— W.

):V—>W.

Definition 3.5. The perturbed Cliffordian monopole equation perturbed by n € H is
defined by

(5) &SQb - €¢7
Pos = (0 ® ¢")o — V—1E4E + 1)
for (¢,€) € L}(S]) @ Li(CLD).

Definition 3.6. We define the space Snon,; of all solutions of the perturbed Cliffordian
monopole equation perturbed by 7 by

Svionyy = (D +Q — 1) 1(0).
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Furthermore we define the irreducible part Syon,," of Smon,, by

*
Smvon;” = Smon,, — SAsD
where the closed embedding
Sasp,n — Smony

is defined by sending each £ € Sagp,, to (0,£) € Smon,,. In particular, we set Syon =
SMON -

Theorem 3.2. If Syon,," ewists, then Syon,”™ i a smooth oriented manifold of dimension

. . X) + sign(X 2 )
dim Syon, — — ) 2‘%9”( ) 4 (27T\/__1)2k/xch(L)A(X)+1,

for a generic perturbation n € I'(CLT) satisfying n # 0 Furthermore, Syon,y, is compact.
In particular, Syon s compact. Here

ch(L) = tr (exp(—Fa))

A(X) = det? (%) ’

and
where Fx is the curvature form of A.

Corollary 3.2. Syon,™ = Smon,, is compact for a generic perturbation n # 0.

Proof. This lemma immediately follows from Corollary 3.1. L.

This theorem is proved in Sections 4-5.
The group U(1) = S* C C acts on I'(S7) by

I(S¥) x S' —— I(S%)
px eV e VI0y

On the other hand S' acts trivially on I'(CT). When the line bundle L is trivial and
n=8k+4, k=0,1,..., ['(S*) is considered as an infinite dimensional H-module such
that I'(S*) = H>®. Then the quaternion j € H, j2 = —1 acts on I'(S7) on the right via
the multiplication Furthermore, j acts on I'(CyE) by multiplying the number —1. Thus,
in this case, we can consider the Lie group Pin(2) = (S',j) € H* acts on V and W
on the right. It is easy to check that the (perturbed) Cliffordian monopole equation is
Sl-equivariant. But, even if the line bundle L is trivial and n = 8k +4, k=0,1,..., it
is not Pin(2)-equivariant, because the term —y/—1&4¢ breaks the Zy-symmetry.
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Definition 3.7. The moduli space M,, of Syion,, is defined by
Mn — SMONJ]/SI

Since the circle group S* acts freely on Syon ., Smon,, is a principal S'-bundle over M,
and M,, is a smooth oriented closed manifold of dimension

. _ X(X) + sign(X) 2 . -
dim M, — : + G /X h(L)A(X),

if Smon,y, exists. We remark that if Syon, exists, then dim Svion,,, must be greater than
or equal to 1.

4. THE MANIFOLD STRUCTURE ON Syion,,

Lemma 4.1. There exists a Baire subset B of H such that for each n € B satisfying

n # 0, Sasp, 15 a smooth oriented manifold of dimension

X(X) + sign(X)
2

dimSASDm = — +1,

if Saspy exists.

The proof of this lemma is the same as the proofs of the following two lemmas. We omit
the proof of this lemma.

Lemma 4.2. There exists a Baire subset B of H such that for each n € B satisfying
n# 0, Smony™ is a smooth manifold of
. X(X) + sign(X) 2

dimSMON,n = — 9 + (27T\/—_1)2k/XCh<L)A<X)+1’

if Smony,” exists.

Proof. We define a map
Jo LS @ Li(Cuo) @ H —— LE,(Sp) @ L, (Cug)
by
J(9,6m) = (D+Q—n)(9,6).
Let S = J~'(0). We denote by d.J the Fréchet differential of J at (¢,&,n). For smooth

curves {¢;} C L(S}), {&) € L (Cp”) and {n;} C H such that ¢ = ¢y, & = & and
n = 19, we set

d

¢t> SZ_

. d
dt €ta n=-
t=0

dt T]t?
t=0

t=0
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respectively. The Fréchet differential ¢.J is given by

d

0J((6,€).9) = —

=2 @+2-m 6.8

t=0

:( o Dsdp—Eo— b - )
oS+ (0@ 6™ )o+ (0@ 0% )o + V—1E4E + V-1 — 1)
We have 0J = 6,J @ d,.J, where

(51J(¢ 5) — ( . . @S¢ _f¢ - f¢ ) ' )
’ Do + (0@ ¢*)o + (9 ® ¢*)o + V—1ExE + V1864

i) = (0,

Since §;.J is an (real) elliptic operator, d;.J is Fredholm with
indexg 61 = 2indexc (Ps: L7(S}) — Li_1(Sy))+indexg (Pc: L7 (CrZ) — Li_(CL1)).

By using Lemma 2.9 and the Atiyah-Singer index theorem, we have

. X(X) + sign(X) 2 / .
= — — L)A(X).
indexgd; J 5 - 2/ T Xch( )A(X)
Let R = HX/—1R C L} ((CrF) and £ = RY C L7 (Crt). Now we show that
the image of 6;J is contained in L} ,(S;7) @ L, and that 6;J: L (S, ") & L} (CL7) —
L#(S.7) @ L is surjective . We consider the formal adjoint operator (d;.J)* of §;J. The
restriction of (9;J)* on 0 ® R givn by

0OR —— LI(S.7) @ LA (Cp7)

(0,5) +— (s9,0)

Since ¢ # 0, we have Ker (6;J)*|g = 0. Therefore we conclude R C Coker §;.J. We assume
that n # 0 then the perturbed Cliffordian monopole equation has a no trivial solution.
Suppose that 1 € L;_1(S7) and v € L are L*-orthogonal to the images @s: L?(S}) —
L? (Sp)and @c: L} (CLZ) — L} (CLT) respectively. Furthermore, suppose that (¢, v)
is orthogonal to the image of §;J and (¢, ) # 0. By elliptic regularity, (¢, ) does not
vanish on any open subset of X. Similarly (¢, &) also does not vanish on any open subset
of X. Let U C X be sufficiently small ball centered at a point zy where (¢,&) and (¢, v)
are non-zero. We may assume that they are almost constant over U. Then there exists a
vector (¢, &) € (S} & CL7)4, such that

Re ((~€0(r0) — &(@0)d, 1(w0)) ) #0

and

and

Re ({(6® 6" (@0))o + (6(a0) ® 6" (w0))o + V=T (Ex€(w0) + E(w0)é), V(o)) ) #0.
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We can extend (¢, &) to a global section (¢,£) € I'(S}) @ I'(C1~) vanishing outside U
such that

d [ Re (=66 - ¢6.0)) duot £ 0

/XRe ((((b ® ¢ )0 + (¢ ® ¢*)o + V—1(E4€ + E€4), u>) dvol # 0,

by using a cut-off function. This means that (¢, v) is not orthogonal to &,.J(¢,€). This
is contradiction. Thus d;.J is surjective. Now we apply the inverse function theorem for
Banach spaces to our case. We conclude S is a Banach manifold. Here, we consider the
following diagram:

S o LASH@LAC,)x H —1— [* (S;))& L

H — H
where 7 is the projection to the third factor and @ = 7|s . Then we can write Syon,,; =

7 1(n). Since Sasp, = 0, we have Syon,;,” = Swon,,- We consider the Fréchet differential
o7 of . Then

Ker(97) = { ((6,€).0) | 67((6,€).11) =11 = 0

and
I (57) = {1 | 87((,€).11) = 0}
= (02J) " (Im(d1.])).
Since d;J is surjective, 07 is surjective and
Ker(07) = Ker(6;J).
Therefore 07 is a Fredholm map with
indexg 07 = indexg 6;J +dim R
_ xX) +Zszgn(X> X (2m/2__1)2k /X ch(L)A(X) + 1.

Now we apply the infinite dimensional version of the Sard-Smale theorem to our case.
There exists a Baire set B C H such that for each element n € B with n # 0, the space
Snmon," =7 () of the all solutions of the perturbed Cliffordian monopole equation is a

smooth manifold of dimension
) . X(X) + sign(X) 2 / .
d = — h(L)A(X 1.
1m SMON,n 5 + (271’ /—_1)% « c ( )A( ) +

Let B be the same as in Lemma 4.2
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Lemma 4.3. For each n € B satisfying 1 # 0, Smon,,”™ s orientable. Furthermore, there
is a one to one correspondence between the orientations of Syon,™ and those of

HYR(X) @ HYR(X) & -+ @ HY, L (X)

as vector space over R.

Proof. The tangent space of Syon," at a point (¢,§) € Syony," is isomorphic to the
kernel of the elliptic operator

D = ( Ds —¢ —e9 ) ‘
TN (@@eN+ (@00 Pot V=I(04 +Exe)
Let D = {Dg | (6,€) € Smon,"}. Then D is an elliptic family parameterized by
Smon,,". Thus Syon,”™ is orientable if and only if the index bundle indexD of D is
orientable. It is a well-known fact that index D is orientable if and only if the determi-
nant line bundle det(index D) is trivial. Since we may assume that CokerDy4 ) is trivial
for (¢,€) € Smon,,", we have

det(index D) = U A" Ker Dg¢).
(¢’£)€SMON,W

On the other hand, we set

Dear— s —¢ e )
@0 =\ =@ e)+ (1= De@ N Dot (1 -y T(ep+0))°

and D, = {D(¢>,£),t | (¢,€) € SMONW*} for t € I = [0,1]. Then {D;},., is an elliptic
family parameterized by Swon,,” X I and det(index{D;},.;) is a real line bundle over
Swmon,y X I. The elliptic family {D;},; is the homotopy of Dy = D to D;. We now show
that det(index{D,},.,) is trivial. By definition, det(index{D;}, ,)[=1 = det(index D)
over Syon,” X {1}. We have

det(index D;) = det (index(Ps — £)) @ det (index(d¢))
= det (index(@s — €)) ® det (index((d + d*): Q= — Q7)) .

Since {(@s — &): L?(S}) — L} ,(S;)} is a family of complex linear operators,

dete (index(@s — €)) is a trivial complex line bundle over Syion,,” and naturally oriented.
Furthermore, det (index((d 4+ d*): Q- — QF)) is clearly trivial and the orientation is
determined by the orientation of the determinant line bundle of the trivial family of the
extended AHS-complex

d+

d d d

0 QO Ql Q2k—1

Therefore det(indexD;) is a trivial line bundle and the orientation of det(indexD;) is
determined by an orientation of

HYp(X) @ Hpp(X) @ -+ @ H%kgl(X)* S5 lei)kR,—&-(X)'

Q2 0
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Since I = [0, 1] is contractible, the same conclusion for det(indexDy) = det(index D)
follows. By using Assumption 3.1, we have the assertion of the lemma. O

5. THE COMPACTNESS OF Syion,y,

We will show the compactness of the space of all solutions of a perturbed Cliffordian
monopole equation by using the standard elliptic bootstrap technique. The argument is
the same as that in the proof of the compactness of the moduli space for the Seiberg-
Witten equation. See Kronheimer-Mrowka [19], Morgan [25].

Since the chirality operator v and the twisted Dirac operator @¢ satisfy the relation
doy = —~@, the following diagram is commutative.

Diagram 5.1. The following diagram is commutative.

rco) 2o eyt
Al =
ry) 2o re

where Ar, = AQrAdPr, = +/—1A.

Lemma 5.1. Suppose that (¢,£) € I'(S}) & I'(CL7) is a solution of the perturbed Clif-
fordian monopole equation (5). Then we have the following formulas

(6) Dad+c(Fa) + 76 = (6. © 6")06 + (L = V=1)§4€6 + o
and
(1) Ag+ 76 = (V=1 = D(E(6® 6o + (6@ ¢ )osE) — 26646 — V=1(En + 1),

where Ay and A denote the Laplacians and k the scalar curvature of X.

Proof. In a local frame (ey, ..., ey;) with respect to a normal chart U of X, i.e., V,e; =
Vee; =0 for all 4, j, we write § = 37, qqfer =30, 4 @' (er —ver) € I'(CLZ), where
ol € L?(X,/=IR) for each I (, so that (£4£¢) = 2|¢|*|¢[%). By Lemma 2.10, we have

Ds°0 = (Pcb)d + o

= —(p®¢")od — V—1E4ED + n + E4E
= —(0®¢")od + (1 — V—=1)40 + 0.
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Therefore, by using the Lichnerowicz formula for the twisted Dirac operator @s, we have
the first assertion of the lemma. Next, we have

D= —Polop ® ¢")o — V=190 (£48)
—((Pcd) @ ¢")o — c((¢ ® V4™ ¢*)o) — V—1(Pclp)é — V—1c(£4VE)
= —((Pc9) ® ¢")o — c((¢ @ VA*¢*)0) — V—1(Pc€) u€ — V—1c(4VE).

We denote —((@cd) @ ¢*)o, —c((¢ @ Va™0")o), —V—1(Dc&)4E and —v/—1c(§4VE) b
Ry, Ry, Ry and Ry respectively. We first compute R;. We have

—£(¢ @ ¢")o,

by using the monopole equation (5). Let SD be a subset of the set of all multi-indices
such that the set {E“L% | I e SD} forms an orthonormal basis of C;T(U). Here we
write (¢ @ V*)o = D" 1 > jcsp dmzﬁ{eﬁ% . Then we have

Ze Z 5161—1-761

=1 1eSD
:_ZZBIBI—F”Y@IZJFQZ Z ﬁ]el ’Yeli
i=1 IeSD =1 i€l,]IeSD
:_Zzﬁel—i_ﬁyell_‘_zzﬁel ’761‘
i=1 I1eSD i=1 €l

by the same technique as in the proof of Lemma 2.10. The first term of the right-hand
side of the above equation is equal to zero, because it is in I'(C") and the second term

is — (¢ ® (Psd) )og = —(¢ ® ¢*)ox&. Moreover,

Ry = V—=1(¢ @ ¢ ol — (£48) & — V—1nué
= V=1(¢ ® ¢*)oul — £64& — V—1nu.
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Furthermore

Ry = —\/—_12€Z- Z ol (er + ver) Vi€

i=1 I:type A

— V-1 (Z S oaller+ven)eVie—2) " Y al(er - vef)ez-V&)

i=1 I:type A i=1 i€l,l:type A
n n

=1 (Z Z o/(e; +ver)e; Vi€ — Z Zal(el — fye[)eivif>
i=1 I:type A i=1 i€l

= V=1€4(Pc€) — V-1E(Pc€)

= —V=1E(Pot)

= V=1 (— (0 ® ¢7)o — V=14 + 1)
= V=1E(¢ ® ¢*)g — EE4E — V=16,

Therefore we have the second assertion of the lemma. O

We simply denote @F_ A*=3T*X®ry/—1R by AZ and &F Q% 3(X)@rv—1R by Q4.
Now we consider the differential operator (superconnection) Ve: I'(Sp ") — I'(A{®@rS.™)

-1
corresponding to a Clifford section £ € I'(C”). Let & = (%) ¢ € I'(Ar). Since the

map 1_727: I'(Ap) — I'(C7) is an isometric isomorphism, the section £ is uniquely de-
termined by . Let p = ¢! I'(Cf) — Q*(X)®rvV—1R and o = p(¢’). Then a € Q4.
We define V¢ by Ve = V4 + a. We regard the space A = V4 + Q4 as the affine space of
U(1)-superconnections on S, *. The twisted Dirac operator is related to V¢ by the relation

+ +
(Ps+8&)d = c(Ved). Let V?2®SL the differential operator Vﬁ?@)SL +a: M(A1@rSLT) —

+
I'(AM@rAf®RrSLT), where ng@)sL denote the covariant derivative on I'(A4®g S ™). The
differential operator Vi = V7 + a*: I'(Af®@rSLT) — I'(SyT) is defined by

VeVes = —tr (VO Veo)

AteST . . AtesSt . . . .
where —tr (VgL r ngﬁ) is the contraction of V. *""*V¢¢ with the Riemannian metric

g. The Laplacian A is defined by
Aep = VeVed
for all ¢ € I'(S;™). More precisely,
Aep = ViV + "V 40 + V() + o ag.

The operator o*: I'(A4®rS; ") — ['(Sp1) is explicitly given by a*y) = —tr(az)) for all
Y € IN'(A}®rSL"). Thus we have o*ag = 2|¢[%¢.
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Lemma 5.2. The superconnection V¢ is Hermitian, that is, the identity

dof* = (Ve 9) + (9, Veo)
holds for all ¢ € I'(S.™).

Proof. Write{' =37 . . A aler, where o € C*(X,/—1R). Then a = > ltype A alp(er).
We have

dlg* = (Vag, ¢) + (0, VA¢>
= (Vag,¢) — Y o' (ple, o)+ > o' {pler)d, ¢) + (6, Vag)

I:type A I:type A

= (Vag,0) + {0, 9) + (¢, a0) + (6, V a0)
= ((Va+a)p,¢) +(9,(Va+ a)9)
= (Ved,9) + (9, Veo).

This completes the lemma. O

Lemma 5.3. (Kato’s inequality) For any ¢ € L?(S;") and € € L} (CL7), the inequality
Ax|¢l” < 2Re(A¢o, )

holds almost everywhere on X, where Ax denotes the scalar Laplacian on X.

Proof. By using Lemma 5.2, we have
Ax|él® +2Ved|* = 2Re(A¢o, ).

Therefore we have the lemma. O

We simply denoted by @¢ the twisted Dirac operator @s + . We consider the total

twisted Dirac operator
0 7 resyh) r(sy™)
Ds = < S) N R

Ps 0 r'(s.™) r(s.™)

Here the twisted Dirac operator @g: I'(S;,~) — I'(Sp™") is the formal adjoint operator

of Pg, that is, (Psp,v),;2 = (¢, Ps1b) - holds for all pair ¢ € I'(S;, ") and ¢ € I'(S7).
The formal adjoint @ : I'(S™) — I'(SL™) of @ is given by @; = @5 + £4, because the
fact that

<@§¢7 ¢> - <@S¢ + &9, w>

= (Ps0,V) + (£0, ¥)

= (¢, D) + (&, &)
(
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P = (T o)

We simply denote @5ds: I'(Sp, ") — I'(Sp*) by @%. Similarly we denote @@ by 9%.

holds. We have

Definition 5.1. For any (¢,¢) € I'(S. ) @ I'(CL7), we define F(¢, &) € I'(Sp1) by

F(6.§) = 020 — (Beo+ c(Fa)o + 70+ 3(8)9)
Also we can write

F(0,€) = E4(Ps50) + Ps(§9) — a"Vad — Vi(ag).

Lemma 5.4. For any (¢,€) € I'(Sp%) @ I'(CL7) satisfying the equation Js¢ = £¢, we
have the equality

A — Audp— F(6,8) + (s8¢ + 2/¢ %0 + 20(£)p = 0.

Proof. Since @3&5 =0, we have

K A
A_¢d+ c(Fa)o + i F(¢, =€) +6(=&)¢ = 0.
Also by Lemma 2.10 and the Lichnerowicz formula, we have

K
Aud+c(Fa)g + 1= (D)o + Exlo.
From the above two equality, we have

0=A_eh— Aud+ F(h,—€) + (Pc€)d + E4€d + (=€)
= A_¢d— Aud— F(6,6) + (Dc€)d + 2/¢°6 + 20(€) 9,

by F(p, —€) = —F(¢,€) and §(—€) = 5(€). O

Lemma 5.5. For any (¢,£) € I'(Sp%) @ I'(CL7) satisfying the equation Js¢ = £¢, we
have

F($,6) = (Jo€)d — (§c) e + 20(6)¢,
where we denote (o)) by the I'(2E2(CY & C*)) component of ¢ € I'(CLT).
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Proof. Since ¢(V4¢) = 152c(a)¢, we have
a*V 0 = —tr(aVa9)
= (c(@)e(Vag))
1 11—
- (e ) o
0

= (48 0)¢
= 2/¢[%0.

Furthermore we have

(@9))

—ur (Vi
_tr (( Q)6 + avA¢)
= (D)o + (£48) 00
= (Do) b + 2/€[° 6.
Therefore we have
F(6,6) = E4Ps0 + P5(€0) — "V ag — Viy(ag)
= £480 + P50 — 281°0 — (D¢ — 21E[¢
= 26480+ (D) ¢ — 4lE1d — (D)oo

= (Pc)d — (b)) + 20(€) .
]

Lemma 5.6. For any solution (¢,€) of the perturbed Cliffordian monopole equation (5),
we have the equality

A_ed— A +2(1 — V=1)|¢[’d + o = 0.

Proof. By lemmas 5.4 and 5.5, we have
A_ed— Do+ 210 + (Dc) -

Furthermore, by the second equation of (5), we have

(P ¢ = —2V—1|¢]¢ + no.

Therefore we have the assertion of the lemma. O

The following is the key lemma for the proof of the compactness.
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Lemma 5.7. For all (¢,&) € Syon,y, we have
|¢|2<01(X7L797h7*’4)7 ’£|2<02(X7Luguh7*’477]>7

where Cy and Cy are constants independent of the choice of (¢,£) and depending only on
the Riemannian metric g of X , the Hermitian metric h on L, the Hermitian connection
A and the perturbation n.

Proof. By Lemma 5.1 and Lemma 5.6, we have
®) Aed+c(Fa)p+ 26— (1= V=1)3()o + (6 ® ¢")od = 0.

Since X is compact, there exists a point xy € X such that |¢(z)| takes the maximum
value at xy. By Kato’s inequality, we have

Re(A_¢(x0), o(x0)) = 0.

Furthermore, by Lemma 2.12, we have

(=0(&(w0))o (o), B(0)) > 0.
Therefore we have by (8)

Re{e(Fa(x0))é(xn). 6(z0)) + "2 fo(an)? + L lo(an)l* <0.
We define
llc(Fa)|| = max{ max <C(FA)U,’U>} .
7eX | foll=tvecy ",
and

Ko = I;él)r(l {r(x)}.

Then we have ¢ = 0. Otherwise

1 K
Slo(ao)l* < max {0, =22 + [le(FW)] [}
Therefore there exists a constant C'; depending only on x and F)4 such that
6" < Ch.

Furthermore, this implies that the operator norm of (¢ ® ¢*)y and (¢ ® ¢*)ox are bounded
by some constant K; depending on C and n, that is,

Re((¢® ¢")o,€) < Kil¢l*,  Re((6@ 6oy, &) < K¢
By Lemma 5.1,(7), we have

Re(A&, ) + T161° + Rel€(0 ® 6o + (6 ® 6)osE, ) + 2A664E, € + V(&N +146,6) = 0.
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There exists a point x; € X where |[£(z)| takes the maximum value at x;. Then, by
Kato’s inequality, we have Re(A&(x1),&(x1)) > 0. Moreover, by Lemma 2.13, we have
2E(z1)Ex(1)E(21), E(21)) > 4]€(21)[*. Therefore we conclude that

@E(SIH)P + 2K1|§(:B1)|2 + 4|f(£B1)|4 + Re(vV/—1(&(x1)n(xy) + s (21)€(x1), E(21))) < 0.

Here we have the following estimation

[Re(v=1((z1)n(1) + ng(21)€ (1), £(21)))] < 2n(a)|IE(2)[
We denote by ' € R the number max,cx{|n(z)|}. We define

Cy = maX{O7 —f—g — % + %77’} .
Then we have
€* < Ch.
This completes the lemma. O

By the following lemma, we complete the proof of Theorem 3.2.
Lemma 5.8. For alln € F(C’Li), Smon,, is compact.

Proof. By Lemma 5.7, we can assume that (¢,&) is L%bounded for ¢ > n. Then
D(¢,&) = —(Q —n)(¢,€) is also L{-bounded. Since D is an elliptic operator, (¢, &) is Li-
bounded. Since (1 — (n/q))+(1 — (n/q)) > 1—(n/q), we have L{x L{ C L{ by the Sobolev
multiplication theorem. Thus (Q —n)(¢, ) is also L{-bounded. By induction, we conclude
(¢,€) is Li,-bounded. Applying the Sobolev multiplication theorem and the Sobolev
embedding theorem to our case where (2k — (n/q))+ (2k — (n/q)) > 2k —2k, n—(n/q) >
2k — 2k and 2k > 2k, we have L, x L C L3, and L2, C L3,. Thus we have both
(¢,€) and (Q — n)(¢, &) are L2, -bounded. The equation D(¢, &) = —(Q — n)(¢, ) implies
D(¢,€) is L3;-bounded. The Sobolev multiplication theorem shows L3, | X L3, ., C L3,
because (2k+1—2k)+ (2k+1—2k) > (2k+1—2k). Thus both (Q —n)(¢, ) and D(¢,¢)
are L3, ,-bounded. By induction, (¢,&) is L7-bounded for any I > 2k. Now we use the
compactness of the embeddings L} C C'=2*=1. Therefore Syion, is compact. O

Remark 5. The embedding Sasp,, — Smon,, is closed for each n € I'(Cp,T). Therefore
Sasp,, is compact. This completes the proof of Theorem 3.1.

Remark 6. By the proof of Lemma 5.8, we also conclude that if the line bundle L is trivial
and the scalar curvature s is positive then Syon,, with sufficiently small perturbation n
is empty.
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Remark 7. The diffeomorphism class of Syion,, is uniquely determined and is independent
of the choice of I > 2k. Furthermore we can consider each (¢,£) € Suon,, to be a C*-
solution. Therefore Syon,, is compact in I'(S, ") & I'(C,Z) with respect to the C-
topology.

6. SMOOTH INVARIANTS OF A SPIN MANIFOLD

In this section, we consider the perturbed moduli space M,, perturbed by a perturbation
n € BNI(CLY). In Section 4, we considered a family of linear elliptic operators

Ry o ) S I(S))

(¢ @60+ (0@ 0N0E Do+ v TogttVTEye) a7 e (0

parameterized by (¢,&) € Svon,,. Here we consider a simpler family of complex linear
elliptic operators

D= {Ppe: I'(SL) — I'(SL)}
instead of the above family, where we define a full twisted Dirac operator @, ¢) by

A r(sy)
(0 @s=9) . LF g
oo = (@s —¢ 0 ) (s rs;)

Roughly speaking the index bundle index D for the elliptic family D is formally given by
indexD = U Ker (s — &) — U Coker (@s — &)

(¢a§)€SMON,'q (qb’g)ESMON,n
= U Ke@-9- |J Ke@s—or
(¢a§)€SMON,'q (qb’g)ESMON,n

See Donaldson-Kronheimer [12],Section 5.2.1 and Atiyah-Singer [7]. The equation @4 ¢ =

0 for ¢p € I'(Sy) is S'-invariant. Thus indexD is a virtual S'-bundle over Svon ), 1.e.,
indexD]gs1 € Kgi(Smony). On the other hand, since S'-acts freely on Syon,,, the
quotient space index D/S" is a virtual bundle over M, = Syon,,/S?, i.e., [indexD/S'| €
K(M,). Wesimply denote index D/S" by index D. The determinant line bundle det(index D)
is given by

U AmKer(p, — &)c (A Coker((, — 5))*}

(9,£)€ESMmoON, 5

det(index D)/S" = { i

Then det(index D) is a complex line bundle over M,. Let s € Spin(X) be a given spin
structure.
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Definition 6.1. We define a rational number ¢,(X, L) by

qs(X, L):/ ch(index D).
M

n

We also define an integer ¢/(x, L) as follows: if dim M, is positive and even, then we set

¢.(X,L) :/ ¢1(det(index D))<,
M

n

where d = %dim M,; if dim M,, = 0, then we set

(X L) = /M 1= & M,

n signed

where § M, means the signed number of points in M,,, which are signed by orientation
signed

of M,;; otherwise we set ¢ (X, L) = 0. Furthermore, we define two maps ¢: Spin(X) —
Q and ¢': Spin(X) — Z by q(s) = ¢s(X, L) and ¢'(s) = ¢.(X, L) respectively.

We remark that
ch(index D) = (ch([index D)), [M,)]),
My
where the last “ch” means the Chern character homomorphism

ch: K(M,) —— H*(M,;:Q).

Theorem 6.1. The rational number qs(X, L) is uniquely determined by the orientation
preserving diffeomorphism type of X, the isomorphism class of L, the spin structure s and
the choice of orientation of

H)R(X) @ Hpp(X) @ -+ @ Hpp (X)),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Proof. Let gy and g; be two Riemannian metrics on X, and hy and h; two Hermitian
metrics on L. Then there exists a smooth path {¢:}, t € I = [0,1] of Riemannian
metrics on X such that {g;} joins gy to g;. Moreover there exists a smooth path {h;}
of Hermitian metrics on L such that {h;} joins hg to h;. Then we can choose a smooth
path {A;} of connections on L such that for each t € I, A; is a Hermitian connection
with respect to h;. We denote by St and C% the twisted spinor bundle and the Clifford
bundle with respect to g; and h, respectively. Since St = S; and Ct = O}, for any metrics
g, by (t € I), we may identify all of them respectively. We denote by @%: I'(Sy) —
I'(Sy) and @, : I'(Cp) — I'(Cyp) the twisted Dirac operators with respect to the metrics
g: and h;. And we denote by Q;: V' — W the quadratic map with respect to the metrics
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g: and h;. For each t € I, we denote by 7, the chirality operator with respect to g;.

We denote by Eq,(n) the perturbed Cliffordian monopole equation perturbed by 1 with

respect to the twisted Dirac operator ;/9’;, @tc and the quadratic map @);. For each t € I,

we denote by B; the Baire subset of H; = {n € I'(*52C") | §m = 0} such that for each

n € By, the space of all solution of Eq,(n) is a smooth manifold. Let ny € By and 1, € B;.
Let

P={peLi(I,CL*) [ u(0) = no, u(1) = m,p(t) € H, (t€I)}.
We define a map
Jr LS @ Li(Crl) @ T ® P —— L (Sp) @ L (Crl) @ 1
by
J(¢7€a tnu) = ((Dt + Qt - nt)(¢7€>7t) )
Let S = J'({0} & I). We can show that S is a Banach manifold , by the same method
as in the proof of Lemma 4.1. Let 7: § — P be the projection to the P factor. Again,

by Assumption 3.1, we can show that there exists a Baire subset C of P such that for
each p € C, the space S, = 7~ *(u) is an oriented smooth compact manifold of dimension

.4 X(X) + sign(X) 2 / -
dimS, = — h(L)A(X) + 2
I Oy, 2 + (27T\/__1)2k x ¢ ( )A( ) +
with boundary Saon,, —Smon e, by the same method as in the proof of Lemma 4.2. We

choose one element € C. We simply denote Su by S. Let #': & — I be the projection
to the I factor. Let M = S/S*. We have

- Li(S)) @ Li(CLD)
M C i
M is oriented by the orientation of Xand the choice of orientation of

HYR(X) @ Hpp(X) & - @ Hpp L (X)

SP®I.

and the natural orientation of I and L, by using the proof of Lemma 4.3. Then M is a
smooth compact manifold of dimension dim M = dim S — 1 with boundary M, — M,,.
Therefore M,,, and M,, is oriented cobordant. Furthermore we have an elliptic family

Dy = {dwe | (6,€) € S},
where
§ =80 (28 © (G0 < {1})
and F(S+) F(S+)
t . T o

Dioe) = (@t 0_5 (@50 3 ) ;e — @ .
° resy)  rsy)
Then {D;} is a homotopy of elliptic families which joins Dy to D;. Now we consider the
index bundle

. index D
indexD; = m;#'
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Since the Chern character of the index bundle of any elliptic family is homotopy invariant,
therefore we have
/ ch(index Dy) = / ch(index Dy ).
MVIO Mm

See Atiyah-Singer [7] . This completes the proof of the theorem. O

Corollary 6.1. The integer ¢.(X, L) is uniquely determined by the orientation preserving
diffeomorphism type of X, the isomorphism class of L and the spin structure s and the
choice of orientation of

H)R(X) @ HpR(X) @ -+ @ Hp (X)),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Corollary 6.2. The maps q: Spin(X) — Q and ¢': Spin(X) — Z are invariants of
spin structure preserving diffeomorphism of X and isomorphism of L.

/!
S

Definition 6.2. We define an integer ¢
then we set

(X, L) as follows: if dim M,, is positive and even,

J(X, L) = / 1 (Sviony) ™
M

n

if dim M,, = 0, then we set

L(X,L) = / 1= 4 M,
M

n signed

otherwise we set ¢7(X, L) = 0.

S

Remark 8. In Definition 6.2, we denote by ¢;(Smon,,) the 1st Chern class ¢1(L) of the
complex line bundle L’ over M,, associated with Syion,-

1"

Corollary 6.3. The integer 7 (X, L) is uniquely determined by the orientation preserving
diffeomorphism type of X, the isomorphism class of L and the spin structure s and the
choice of orientation of

H)R(X) @ HpR(X) @ -+ @ HPp (X)),

but independent of the choice of Riemannian metric g on X and the choice of Hermitian
metric h on L.

Corollaries 6.1-6.3 follow from Theorem 6.1 immediately.
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APPENDIX 1

Our theory also goes well by the Spin© case. Here we explain the outline briefly. Let X be
a smooth connected closed Spin® 4k-manifold satisfying Assumption 3.1. Namely, there
exist a principal Spin®(4k)-bundle Pgpiye over X and a principal U(1)-bundle Pj, over X
and a double covering map p of Pgpine onto F'x x Pr, such that the diagram

PSpinC —£ Fx x P,

X — X

is commutative, where 7 and 7 are the projections. We denoted by ¢ the isomorphism
class of the pair (Pspinc, Pr). An oriented manifold X has a Spin® structure if and only if
the condition wy(X) = ¢;(Pr) mod 2 is satisfied. We can identify a Spin-structure ¢ to a
cohomology class ¢ (Pr) € H?(X;7Z) satisfying the above condition. Let L be a complex
line bundle associated with P, i.e., Ppxyq)C = L. We denote by W, the Spin® spinor
bundle associated with the Spin® structure ¢. Then Wy, is locally isomorphic to S ®@L%.
We remark that the spinor bundle S and the square root L3 always exist locally, even if
X is not spin. We define the twisted Clifford bundle C;, by C;, = C ® Ad P, = /—1C.
The Riemannian metric g on X and the Hermitian metric h on L induce the twisted Dirac
operators @y : I'(Wy) — I'(W) and @c: I'(C) — I'(CL) as in Section 2. Then the
Cliffordian monopole equation on the Spin® manifold (X ¢) is given by

Iwo = &9,
Pl =—(0®")o — V—1648

for (¢,&) € I'(W,) @ I'(C1”) in the same way as the spin case. The same results
corresponding to ones in the spin case still hold in the Spin® case.

APPENDIX 2

Let C' = C(R%) be the Clifford algebra on R* and M = M* & M~ the spinor module of
C. In this section, we will show the following two formulas:

G0N =gua O {eesddleres

1,J:0dd,type A,
erej=—ejey

and .
(¢ ® 6700, 0) = 519l
for ¢ € M, where we denote by (¢ ® ¢*)g the purely imaginary part of ¢ ® ¢* in CT®gC.

Lemma A.1.

e =m Y lexddex

K:even, type A
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Proof. The orthogonal decomposition of ¢ x ¢* in CT®zC is given by the formula

¢ = Y ek, 0@ )cex+ Y, (en, 0 @¢")ger

K:even, type A L:even, type B
1
= ﬁ Z <6K¢7 ¢>€K + Z <6L¢7 ¢>6L )
K:even, type A L:even, type B

where (o, ®) . and (e, e) are the the metrics on C®rC and M™ respectively. For any even
multi-index K of type A, we have

(exd, ¢) = (ex’p,exd) = — (¢, exd) = —(exd, P).

It follows that (ex¢, ¢) is purely imaginary. By the same way, for any even multi-index
L of type B, we have

(e, ¢) = (er’d,eLd) = (p,eLd) = (eLd, ).

It follows that (er¢, ¢) is purely real. Therefore the lemma is completed. O
Corollary A.2.

. L+7y
(0® ¢ = Sers > leresd, d)eres.
1,J:0dd, type A
€iej=—¢€jer

Proof. we can easily show that

(14+7) > (eresd, dere; =2%72 " (exd, d)ex,

I,J:0dd, type A K:even

where the number 2*~2 is the multiplicity of each (ex¢, ¢)e in the left sum. For any
pair of odd multi-indices I and J of type A, the product eje; is type A if and only if the
equality ere; = —ejey follows, and the product eje; is type B if and only if the equality
erey = ejey follows. Therefore, by Lemma A.1, we have

6eFh=g O lexddex

K:even, type A

I+~
= Jo2 > leresd d)erey.
1,J:0dd, type A
EfeEjg=—€Jery



A CLIFFORDIAN MONOPOLE EQUATION 41

By Lemma A.1, we have

18> = (¢ ® ¢")0, b)

ZQL{ YORRCTXIONOE S <eJ¢,¢><eJ¢,¢>}

I:even, type A J:even, type B

= 2%{ S e o)+ D |<€J¢7¢>|2}-

I:even, type A J:even, type B

To prove the second formula, it suffice to show the following formula:

Lemma A.3.

Z (er0h, §)|* = Z (es0, )]

I:even, type A J:even, type B

Proof. We fix the usage of notation of the multi-indices as follows: we denote by I or I’
an even multi-index of type A and denote by J or J’ an even multi-index of type B. It
suffice to consider the case where ¢ # 0. Since

60 = (6 @ ¢")¢ = 2—1,€ {Zw, Serd+ Y (esd, ¢>ej¢} ,
J

I

we can decompose :

> (er¢. d)erd = Cad+ 1

T
and

> (esd.d)esd = Crod + s,

J

where C'4 and C'p are non-negative real numbers satisfying the relation C4y+Cp = 22k|¢|2,
and ¢4 and 1 are some vectors in M7 satisfying the relation ¥4+ = 0 and (14, @) =

<va ¢> = 0.
We first consider the case where 4 = ¥p = 0. Let A = > (erp, p)erp = Ca¢ and
T

B =) (es0,0)e;¢0 = Cpp. We have
7

CaA =Y erd, der Y (erd, d)erd
I

I/

- Z<€I¢’ ¢> <€I’¢7 ¢>€[611¢
1.1

Ni
=Y erd, )P o+ (erd, d)lerd, d)erersd.
I

I£D
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Then we have

CAlo[* = (Cad, ¢)
= Werd, )P I8I° + ) (erd, &) (erd, ¢){ererd, )
I

I£I

= Calo'+ Y (erd, 0)(erd, d)(ererd, 9).
I#I
erepr:itype B

Therefore we have

Chlol = Calol' = > (e10,0)(erd, d){ererd, d).
I#I
erep:type B

Similarly, we obtain

Chlol* = Calel' = > (s, 8)(esd, o) esend, ¢).
JAJ!
ejeritype B

Here, since

Y (e d)erd d)ererd, o)
T£I
erey:type B

= > (derd)erd.erd)erd, d)
I#I
erepr:itype B

= > (0@ (en0))’0
I#I

em=erep :type B

=S B(68 nd))
J#£J!

em=ejey:type B

= ) (desd)lend,esd)lend,d)
J#£J
eje ritype B

= Z <€J¢, ¢> <6J’¢, ¢> <€[€J’¢7 Qb),
J#J
ejeyritype B
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it follows that
0= C3lo" = Calél" = Culél” + Cnlol*
= (Cp — CA)|¢I*(Ca+ C — [¢]*)
= (2 = 1)[¢]"(Ca — Cp).

Therefore we conclude that C4 = Cjg.

We next consider the case where ¥4 # 0. We denote by 7: M+ — M the C-linear
map uniquely determined by the condition 7(¢) = ta, T(¢a) = ¢ and 7y, 41 = 1.
Then the restriction of 7 on ({¢,¥4}) is given by

o e

_ [Pal

Tligowan = | wa
91

and

The linear map 7 satisfies the properties: 72 = (1s,'7t)y = (s,t) for all s,t € M.

By definition of 7, we have
T(Z<€I¢, dyerd) = 1(Cad+1va) = Catha + ¢
I
and

() (esd, 0)esd) = 7(Cpo + ¥p) = T(Cpd — va) = Cpoa — 6.
J
The other way, we have , by linearity of 7,

(> (e10, d)erd) = > (ero, ¢)7(erg)
and

T(D (esd,0)esd) = (esd, d)7(es0).
J J
Then we have

|6 = (Catr + 6,0) = Y _ (e10, $)(7(e10), ¢)

I
and

—|0* = (Ct = 6,0) = > _ {es0,0)(7(es9), ).
J
Therefore, we have

0:Z<€[¢ ¢ 6]¢ +Z €J¢ ¢>
I J
= Z €10, 0){(e10,'70) + > _ (€16, d)(es0,'70)
J

= % (Z (€10, 0){er6,va) —

9){es, 1/}3)) :
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Since |¢|/|a| # 0, we have

0=> (e10,0)(er0, Y (erd, dherd — Cad)
7

I

= {esd,0)lesd, Y lerd, d)esd — Cpd)
J J!
=Y {e16,8)lerd, o){erd erd) — Ca»_ (erd, d)*

INg

— > Terb, Dlerd d) (esbiesd) +Cs Y (b ).

JJ!
Here, since we can show the following equality as in the first case

> (e1, d)lerd, ¢)lerd,erd) = > (esd, o) erd, d){esd, erd),

I£D J#£J

and since 3| (19, 9)[* = Calg|* and 3-[(es0, ¢)|” = Cp|o|, we have
I J

0= Calo|" — C2|¢|* — Crl¢|" + Cil¢|”
= (Cp — CA)|¢|2(CA +Cp — |¢’2)
= (2% —1)(Cp — C)|0|".

Therefore we conclude that C'y = Cg. The lemma is completed. O

Remark 9. We expect that 104 = g = 0 in the proof of Lemma A.3, so that (¢ ® ¢*)op =
%|¢|2¢. But we can not yet prove it. So this is a conjecture except 4-dimensional cases.

APPENDIX3

In this section, we consider 4-dimensional cases. Let X be a simply-connected closed
Spin© 4-manifold. Let L be a Hermitian line bundle over X and A a Hermitian connection
on L. The twisted Dirac operators @y and @ are assumed to be constructed by using
A. Let us assume wy(X) = ¢;1(L) mod 2. We think ¢ = ¢;(L) of a Spin® structure on X.
The perturbed Cliffordian monopole equation for (X, L) is given by

Dwo = £,
Dot = —(6® ¢")o — 2/=1(1 + 7)|€]* + 1,

for (¢,€) € I'(W.%) @ I'(C,Z) , where the perturbation term 7, € I'(CLY) satisfies
dcm = 0. By the way, the perturbed Seiberg-Witten equation for (X, ¢) with the Coulomb

(9)
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gauge condition is given by

@W¢ = —(I¢,
(10) dta=—Ff +c ¢ ® ¢*)o + w,
d*a =0,

for (¢,a) € I'(W,") @& V—1QY(X), where w € /=102 (X) satisfies dw = d*w = 0. Here
we write § = —17_570(@) € ['(C,2) and 1y = —c(w) € I'(CT). Then the equation (10) is
equivalent to the following equation:

Dok = c(F)) — (6 ® ¢*)o + o,
for (¢,€) € T(W; ") @ I'(C~). We define a homotopy connecting (9) and (11) by

Dot = (1= t)e(FY) — (¢ ® ¢")o — 2V/=Tt(1 +7)[¢* + n(t),

for t € I = [0,1] and (¢,&) € T(W ") @ I'(C1~) , where n(t) € I'(CL”) is a smooth
homotopy connecting 79 and 7; satisfying the condition @dcn(t) = 0 for all ¢ € I. From
the Seiberg-Witten theory, we can detect the generic path condition for the perturbation
n(t) of (12). If b3 (X)) > 2, then we can show that the space

A={(,&1) € EWH) @ LACLD) @ T | (,€,1) satisfies (12)}
is a smooth oriented manifold with boundary of dimension
X ign (X 2 ¢ a
)+ sign(X) [ s
2 (2mV/—1)% Jx
for any generic perturbation 7)(t). Furthermore we can show that the projection p: S—1
is surjection. Now we show the following proposition:

dim S = —

Proposition A.4. S is compact.

Outline of the proof. For any solution (¢, &, t) of (12), we have the following equalities:
K
Apdp+te(F7)o + Zﬁb + (¢ ® ¢ )odp =0

and
A&+ 56 = (VITE = 1)(EG® 60+ (6® ")ost) — 4121 = 7)€ — V=THED + )

as the proof of Lemma 5.1. Using these equalities, as the proofs of Lemmas 5.4-5.7, we
have the a priori bound estimations:

’¢‘2 < Cl(X7L7gvhaA)

and
€] < Co(X, L, g, h, A, n(t), t).



46 KENROU ADACHI

Therefore, for all ¢t # 0, we can show that S = p~t({t}) is compact by using the elliptic
bootstrap argument with respect to the equation (12) as the proof of Lemma 5.8. On the
other hand, since the space S is the space of all solutions of the Seiberg-Witten equation
with the Coulomb gauge condition, we know the space Sy is compact. Therefore S is
compact. 0

By Proposition A.4 | S gives the oriented cobordism between Sy and S;. As a result of
this, we obtain the following;:

Theorem A.5. Let X be a simply-connected closed spin 4-manifold with b2 (X) > 2,
and L a Hermitian line bundle over X with ¢ = ¢;(L) which is equivalent to 0 modulo 2.
Then our invariant ¢”(X, L) is equal to the Seiberg-Witten invariant SW (X ¢).

Remark 10. The assertion of Theorem A.5 is also valid even if X is a simply-connected
closed Spin‘®-manifold with b2 (X)) > 2. Therefore for any simply-connected closed smooth
4-manifold X with b% (X)) > 2, and for any Spin‘-structure ¢ on X, our invariant ¢" (X, ¢)
is equal to the Seiberg-Witten invariant SW (X, ¢).
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